Umm. Esto viene de Diophantine ecuación de cuarto grado en cuatro variables y acabado de la parte más importante si se puede hacer.
Cuatro enteros positivos $w,x,y,z.$ Una ecuación y dos desigualdades $$ wxyz = (w+x+y+z)^2, $$ $$ w \geq x \geq y \geq z \geq 1, $$ $$ xyz \geq 2(w+x+y+z). $$
I am hoping for an upper bound. Since i made $w$ biggest, it would be an UPPER BOUND on $w.$ For example, I am running a computer program to find all such quadruples with $w \leq 1000.$
Sample question: is it true that $w \leq 1000?$
This is the method of Hurwitz 1907. I have a pdf. His techniques are almost right for this problem, to the point where i am already convinced that the answer to the question by hardmath comes out the exact same way.
EDIT, these imply easily that $$\color{green}{ x+y+z \geq w}. $$ Podría ser útil.
EDIT: casi lo olvido, estos son lo que yo creo que a todos cuádruples:
w x y z xyz 2(w+x+y+z)
4 4 4 4 64 32
6 6 3 3 52 36
8 5 5 2 50 40
10 10 9 1 90 60
12 6 4 2 48 48
15 10 3 2 60 60
18 9 8 1 72 72
21 14 6 1 84 84
30 24 5 1 120 120