Para la evaluación de las $\displaystyle J=\int_0^{\tfrac{\pi}{2}}\arctan(\sin x)dx$
Realizar el cambio de variable $y=\sin x$,
$\displaystyle J=\int_0^1 \dfrac{\arctan x}{\sqrt{1-x^2}}dx$
Realizar el cambio de variable $y=\sqrt{\dfrac{1-x}{1+x}}$,
$\begin{align}\displaystyle J&=2\int_0^1 \dfrac{\arctan\left(\tfrac{1-x^2}{1+x^2}\right)}{1+x^2}dx\\
&=2\int_0^1 \dfrac{\arctan(1)}{1+x^2}dx-2\int_0^1 \dfrac{\arctan(x^2)}{1+x^2}dx\\
&=\dfrac{\pi^2}{8}-2\int_0^1 \dfrac{\arctan(x^2)}{1+x^2}dx\\
\end{align}$
$\begin{align}
\displaystyle\int_0^1 \dfrac{\arctan(x^2)}{1+x^2}dx&=\Big[\arctan x\arctan(x^2)\Big]_0^1-\int_0^1 \dfrac{2x\arctan x}{1+x^4}dx\\
&=\dfrac{\pi^2}{16}-\int_0^1 \dfrac{2x\arctan x}{1+x^4}dx\\
\end{align}$
Desde entonces,
$\displaystyle \arctan x=\int_0^1 \dfrac{x}{1+t^2x^2}dx$
a continuación,
$\begin{align}
\displaystyle K&=\int_0^1 \dfrac{2x\arctan x}{1+x^4}dx\\
\displaystyle &=\int_0^1\int_0^1 \dfrac{2x^2}{(1+t^2x^2)(1+x^4)}dtdx\\
\displaystyle &=\int_0^1\int_0^1 \left(\dfrac{2t^2}{(1+t^4)(1+x^4)}+\dfrac{2x^2}{(1+x^4)(1+t^4)}-\dfrac{2t^2}{(1+t^4)(1+t^2x^2}\right)dtdx\\
&=\displaystyle 4\left(\int_0^1 \dfrac{t^2}{1+t^4}dt\right)\left(\int_0^1 \dfrac{1}{1+x^4}dx\right)-K
\end{align}$
Por lo tanto,
$\displaystyle K=2\left(\int_0^1 \dfrac{x^2}{1+x^4}dx\right)\left(\int_0^1 \dfrac{1}{1+x^4}dx\right)$
Desde entonces,
$\begin{align}\displaystyle \int_0^1 \dfrac{x^2}{1+x^4}dx&=\left[\dfrac{1}{4\sqrt{2}}\ln\left(\dfrac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}\right)+\dfrac{1}{2\sqrt{2}}\arctan\left(\sqrt{2}x+1\right)+\dfrac{1}{2\sqrt{2}}\arctan\left(\sqrt{2}x-1\right)\right]_0^1\\
&=\dfrac{1}{4\sqrt{2}}\Big(\pi+\ln\left(3-2\sqrt{2}\right)\Big)
\end{align}$
y,
$\begin{align}\displaystyle \int_0^1 \dfrac{1}{1+x^4}dx&=\left[\dfrac{1}{4\sqrt{2}}\ln\left(\dfrac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}\right)+\dfrac{1}{2\sqrt{2}}\arctan\left(\sqrt{2}x+1\right)+\dfrac{1}{2\sqrt{2}}\arctan\left(\sqrt{2}x-1\right)\right]_0^1\\
&=\dfrac{1}{4\sqrt{2}}\Big(\pi-\ln\left(3-2\sqrt{2}\right)\Big)
\end{align}$
Por lo tanto,
$\boxed{K=\displaystyle \dfrac{\pi^2}{16}-\dfrac{1}{16}\Big(\ln\left(3-2\sqrt{2}\right)\Big)^2}$
Por lo tanto,
$\boxed{\displaystyle\int_0^1 \dfrac{\arctan(x^2)}{1+x^2}dx=\dfrac{1}{16}\Big(\ln\left(3-2\sqrt{2}\right)\Big)^2}$
Por lo tanto,
$\boxed{\displaystyle J=\dfrac{\pi^2}{8}-\dfrac{1}{8}\Big(\ln\left(3-2\sqrt{2}\right)\Big)^2}$
Addendum:
$\displaystyle I=\int_0^{\tfrac{\pi}{4}} \arctan\left(\cot^2(x)\right)dx$
Realizar el cambio de variable,
$y=\tan x$,
$\begin{align}I&=\displaystyle \int_0^1 \dfrac{\arctan\left(\tfrac{1}{x^2}\right)}{1+x^2}dx\\
&=\displaystyle \int_0^1 \dfrac{\tfrac{\pi}{2}-\arctan\left(x^2\right)}{1+x^2}dx\\
&=\displaystyle \dfrac{\pi^2}{8}-\int_0^1 \dfrac{\arctan\left(x^2\right)}{1+x^2}dx
\end{align}$