$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\pi}\arctan\pars{\ln\pars{\sin\pars{x}} \over x}\,\dd x
=-\pi\,\arctan\pars{2\ln\pars{2} \\pi}}$
Con $\ds{{\large\tt 0 < \mu < 1}}$:
\begin{align}
\mbox{Permite definir}\quad{\cal F}\pars{\mu}&\equiv
\int_{0}^{\pi}\arctan\pars{\ln\pars{\mu\sin\pars{x}} \over x}\,\dd x\quad
\mbox{tales que}
\\[3 mm]{\cal F}'\pars{\mu}&=\int_{0}^{\pi}
{1 \over \bracks{\ln\pars{\mu\sin\pars{x}}/x}^{2} + 1}
\,{1 \over x}\,{1 \over \mu\sin\pars{x}}\,\sin\pars{x}\,\dd x
\\[3 mm]&={1 \over \mu}\int_{0}^{\pi}{x \\ln^{2}\pars{\mu\sin\pars{x}} + x^{2}}
\,\dd x
=-\,{1 \over \mu}\,\Im\int_{0}^{\pi}{\dd x \\ln\pars{\mu\sin\pars{x}} + x\ic}
\end{align}
$$
\mbox{Estamos interesados en}\quad{\cal F}\pars{1^{-}}:\ {\grande ?}.
\quad\mbox{Nota que}\quad{\cal F}\pars{0^{+}} = -\,{\pi^{2} \over 2}\etiqueta{1}
$$
\begin{align}
{\cal F}'\pars{\mu}&=
-\,{1 \over \mu}\,\Im
\int_{\verts{z}\ =\ 1\cima{\vphantom{\Enorme}0\ <\ {\rm Arg}\pars{z}\ <\ \pi}}
{1 \over \ln\pars{\mu\bracks{z^{2} - 1}/\bracks{2\ic z}} + \ln\pars{z}}\,{\dd z \\ic z}
\\[3 mm]&={1 \over \mu}\,\Re
\int_{\verts{z}\ =\ 1\cima{\vphantom{\Enorme}0\ <\ {\rm Arg}\pars{z}\ <\ \pi}}
{1 \over \ln\pars{\mu\bracks{1 - z^{2}}\ic/2}}\,{\dd z \sobre z}
\end{align}
Nos 'cerrar' la contourn con el segmento de línea $\ds{\llaves{\pars{x,0}\ \mid\ x \in \pars{-1,1}}}$. El segmento es accidentada, con arcos de radio $\ds{\epsilon}$
tal que $\ds{0 < \epsilon < 1}$, alrededor de $\ds{z = -1}$, $\ds{z = 0}$ y
$\ds{z = 1}$. Resulta que las contribuciones de la 'sangría de puntos en $\ds{z = \pm 1}$ se desvanece en el límite de $\ds{\epsilon \to 0^{+}}$. Nos quedamos con un valor principal a lo largo de $\ds{\pars{-1,1}}$, y la contribución de la 'sangría de puntos en $\ds{z = 0}$. El mencionado valor principal se desvanece $\ds{\pars{~\mbox{sus integrando es impar}\ \pars{-1,1}~}}$ tal que la totalidad de la contribución a $\ds{{\cal F}'\pars{\mu}}$, en el límite
$\ds{\epsilon \to 0^{+}}$, surge 'curioso y divertido" sólo a partir de la 'sangría de puntos en $\ds{z = 0}$.
Se muestra como sigue:
\begin{align}
{\cal F}'\pars{\mu}&=\left.-\,{1 \over \mu}\,\Re\int_{\pi/2}^{0}
{1 \over \ln\pars{\mu\bracks{1 - z^{2}}\ic/2}}\,{\dd z \sobre z}
\right\vert_ {\z\ =\ -1\ +\ \epsilon\expo{\ic\theta}}
\\[3 mm]&\phantom{=}-\,{1 \over \mu}\,\Re\int_{-1 + \epsilon}^{\epsilon}
{1 \over \ln\pars{\mu\bracks{1 - x^{2}}\ic/2}}\,{\dd x \sobre x}
\a la izquierda.-\,{1 \over \mu}\,\Re\int_{\pi}^{0}
{1 \over \ln\pars{\mu\bracks{1 - z^{2}}\ic/2}}\,{\dd z \sobre z}
\right\vert_ {\z\ =\ \epsilon\expo{\ic\theta}}
\\[3 mm]&\phantom{=}-\,{1 \over \mu}\,\Re\int_{\epsilon}^{1 - \epsilon}
{1 \over \ln\pars{\mu\bracks{1 - x^{2}}\ic/2}}\,{\dd x \sobre x}
\\[3 mm]&\phantom{=}\left.-\,{1 \over \mu}\,\Re\int_{\pi}^{\pi/2}
{1 \over \ln\pars{\mu\bracks{1 - z^{2}}\ic/2}}\,{\dd z \sobre z}
\right\vert_ {\z\ =\ 1\ +\ \epsilon\expo{\ic\theta}}
\end{align}
\begin{align}
{\cal F}'\pars{\mu}&=
-\,{1 \over \mu}\,\Re\pp\
\overbrace{\int_{-1}^{1}
{1 \over \ln\pars{\mu\bracks{1 - x^{2}}\ic/2}}\,{\dd x \sobre x}}^{\ds{=\ 0}}\
-\,{1 \over \mu}\,\Re\int_{\pi}^{0}{\ic\,\dd\theta \\ln\pars{\mu\ic/2}}
\\[3 mm]&=-\,{\pi \\mu}\,\Im\bracks{1 \over \ln\pars{\mu\ic/2}}
\end{align}
Usando la condición de frontera de $\pars{1}$:
\begin{align}
{\cal F}\pars{1^{-}}&
=\int_{0}^{\pi}\arctan\pars{\ln\pars{\sin\pars{x}} \over x}\,\dd x
=-\,{\pi^{2} \over 2}
-\pi\,\Im\int_{0^{+}}^{1^{-}}{1 \ \mu}\,{\dd\mu \\ln\pars{\mu\ic/2}}
\\[3 mm]&=-\,{\pi^{2} \over 2}
-\pi\,\Im\int_{0^{+}}^{1^{-}}{\dd\mu/\mu \\ln\pars{\mu/2} + \pi\ic/2}
=-\,{\pi^{2} \over 2}
-\pi\,\Im\int_{-\infty}^{-\ln\pars{2^{+}}}{\dd t \t sobre + \pi\ic/2}
\\[3 mm]&=-\,{\pi^{2} \over 2}
+\pi\int_{-\infty}^{-\ln\pars{2^{+}}}{\pi\,\dd t/2 \sobre t^{2} + \pars{\pi/2}^{2}}
=-\,{\pi^{2} \over 2}
+\left.\pi\arctan\pars{2t \\pi}\right\vert_{\,-\infty}^{\,-\ln\pars{2^{+}}}
\\[3 mm]&=-\,{\pi^{2} \over 2} + \pi\bracks{%
\arctan\pars{-\,{2\ln\pars{2} \\pi}} + {\pi \over 2}}
\end{align}
$$\color{#66f}{\large%
\int_{0}^{\pi}\arctan\pars{\ln\pars{\sin\pars{x}} \over x}\,\dd x
=-\pi\,\arctan\pars{2\ln\pars{2} \\pi}} \approx {\tt -1.3055}
$$