Yo estaba enseñando $\left \lfloor x \right \rfloor$ propiedades de la función y ecuación . He resuelto esta ecuación en mi clase . Mis obras se muestran a continuación. Algunos estudiantes me piden Idea nueva...,y ahora estoy buscando varias método para solucionar esto (como este) ecuación.$$\left \lfloor x\right \rfloor+2x=1$$ 1º: $$x=n+p \\n \in\mathbb{Z} , 0 \leq p<1 \to \left \lfloor x \right \rfloor=n ,p=x-n\\ $$ y $$ \left \lfloor x\right \rfloor+2x=1\\n+2(n+p)=1 \to 3n+2p=1 \\3n=0 ,\pm3 ,\pm 6,\pm9,... $$in this case $$3n=0 \to 2p=1 \\n=0 , p=\frac{1}{2} \to x=n+p=0+\frac{1}{2} $$ 2º: $$\left \lfloor x\right \rfloor+2x=1 \to \left \lfloor x\right \rfloor=1-2x$$ like $f(x)=g(x)$ dibujando tanto de ellos obtener la respuesta
Con respecto a la imagen ,es suficiente para solucionar $0=1-2x$s o la respuesta es $x=\frac{1}{2}$
3º : sabemos $$\left \lfloor x\right \rfloor =k \in \mathbb{Z} \to k \leq x <k+1 $$ so $$\left \lfloor x\right \rfloor=1-2x \to 1-2x=k \in \mathbb{Z}\\x=\frac{1-k}{2} \to \left \lfloor \frac{1-k}{2}\right \rfloor =k$$ así tenemos $$k \leq \frac{1-k}{2} <k+1 \\\\left\{\begin{matrix} k\leq \frac{1-k}{2} \to & 2k \leq 1-k \to & k \leq \frac{1}{3} \to k=\left \{ 0,-1,-2,-3,... \right \}\\ \frac{1-k}{2}<k \to & 1-k<2k \to &k> -\frac{1}{3} \to k=\left \{ 0,1,2,3,... \right \} \end{de la matriz}\right.\\ \a la izquierda \{ ...,-3,-2,-1,0 \right \}\bigcap \left \{ 0,1,2,3,... \right \}=\left \{ 0 \right \}\rightarrow k=0 \\\rightarrow x=\frac{1-k}{2}=\frac{1}{2}$$