Este juego permite mirar en $3$ cuadros fijos (sin juego de árbol, etc) para saber donde es de mármol negro.
Por ejemplo, plazas $a,f,h$.
Si uno de ellos es negro, luego de mármol negro que se encuentra ya, y el juego se detiene.
Te voy a mostrar los casos, en que todos los que no son de color negro:
$$
\begin{array}{c}
\color{red} {\blacksquare}\;\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\\
\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\;\color{red} {\blacksquare}\\
\color{gray}{\blacksquare}\;\color{red} {\blacksquare}\;\color{gray}{\blacksquare}
\end{array}
\implica
\mbox {imposible};
$$
$$
\begin{array}{c}
\color{red} {\blacksquare}\;\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\\
\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\;\color{red} {\blacksquare}\\
\color{gray}{\blacksquare}\;\color{blue}{\blacksquare}\;\color{gray}{\blacksquare}
\end{array}
\implica
\begin{array}{c}
\color{red} {\blacksquare}\;\color{red}{\blacksquare}\;\color{red}{\blacksquare}\\
\color{blue}{\blacksquare}\;\color{blue}{\blacksquare}\;\color{red} {\blacksquare}\\
\color{black}{\blacksquare}\;\color{blue} {\blacksquare}\;\color{red}{\blacksquare}
\end{array};
$$
$$
\begin{array}{c}
\color{red} {\blacksquare}\;\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\\
\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\;\color{blue} {\blacksquare}\\
\color{gray}{\blacksquare}\;\color{red}{\blacksquare}\;\color{gray}{\blacksquare}
\end{array}
\implica
\begin{array}{c}
\color{red} {\blacksquare}\;\color{blue}{\blacksquare}\;\color{black}{\blacksquare}\\
\color{red}{\blacksquare}\;\color{blue}{\blacksquare}\;\color{blue} {\blacksquare}\\
\color{red}{\blacksquare}\;\color{red} {\blacksquare}\;\color{red}{\blacksquare}
\end{array};
$$
$$
\begin{array}{c}
\color{red} {\blacksquare}\;\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\\
\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\;\color{blue} {\blacksquare}\\
\color{gray}{\blacksquare}\;\color{blue}{\blacksquare}\;\color{gray}{\blacksquare}
\end{array}
\implica
\begin{array}{c}
\color{red} {\blacksquare}\;\color{red}{\blacksquare}\;\color{red}{\blacksquare}\\
\color{red}{\blacksquare}\;\color{blue}{\blacksquare}\;\color{blue} {\blacksquare}\\
\color{red}{\blacksquare}\;\color{blue} {\blacksquare}\;\color{black}{\blacksquare}
\end{array};
$$
$$
\begin{array}{c}
\color{blue} {\blacksquare}\;\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\\
\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\;\color{red} {\blacksquare}\\
\color{gray}{\blacksquare}\;\color{red}{\blacksquare}\;\color{gray}{\blacksquare}
\end{array}
\implica
\mbox{imposible};
$$
$$
\begin{array}{c}
\color{blue} {\blacksquare}\;\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\\
\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\;\color{red} {\blacksquare}\\
\color{gray}{\blacksquare}\;\color{blue}{\blacksquare}\;\color{gray}{\blacksquare}
\end{array}
\implica
\begin{array}{c}
\color{blue} {\blacksquare}\;\color{blue}{\blacksquare}\;\color{red}{\blacksquare}\\
\color{black}{\blacksquare}\;\color{blue}{\blacksquare}\;\color{red} {\blacksquare}\\
\color{blue} {\blacksquare}\;\color{blue} {\blacksquare}\;\color{red}{\blacksquare}
\end{array};
$$
$$
\begin{array}{c}
\color{blue}{\blacksquare}\;\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\\
\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\;\color{blue} {\blacksquare}\\
\color{gray}{\blacksquare}\;\color{red} {\blacksquare}\;\color{gray}{\blacksquare}
\end{array}
\implica
\begin{array}{c}
\color{blue} {\blacksquare}\;\color{black}{\blacksquare}\;\color{blue}{\blacksquare}\\
\color{blue}{\blacksquare}\;\color{blue}{\blacksquare}\;\color{blue} {\blacksquare}\\
\color{red} {\blacksquare}\;\color{red} {\blacksquare}\;\color{red}{\blacksquare}
\end{array};
$$
$$
\begin{array}{c}
\color{blue}{\blacksquare}\;\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\\
\color{gray}{\blacksquare}\;\color{gray}{\blacksquare}\;\color{blue} {\blacksquare}\\
\color{gray}{\blacksquare}\;\color{blue}{\blacksquare}\;\color{gray}{\blacksquare}
\end{array}
\implica
\begin{array}{c}
\color{blue}{\blacksquare}\;\color{blue}{\blacksquare}\;\color{blue}{\blacksquare}\\
\color{blue}{\blacksquare}\;\color{black}{\blacksquare}\;\color{blue} {\blacksquare}\\
\color{blue}{\blacksquare}\;\color{blue} {\blacksquare}\;\color{blue}{\blacksquare}
\end{array}.
$$
Así, la estrategia puede ser tan fácil.