$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{{\cal I}_{n} \equiv \int_{0}^{\pi/2}\sin^{n}\pars{x}\cos^{2}\pars{x}\,\dd x}$
\begin{align}
{\cal I}_{n} &=
{1 \over n + 1}\int_{x\ =\ 0}^{x\ =\ \pi/2}\cos\pars{x}
\,\dd\bracks{\sin^{n + 1}\pars{x}}
=
-\,{1 \over n+ 1}\int_{0}^{\pi/2}\sin^{n + 1}\pars{x}\bracks{-\sin\pars{x}}\,\dd x
\\[3mm]&={1 \over n+ 1}\int_{0}^{\pi/2}
\sin^{n}\pars{x}\bracks{1 -\cos^{2}\pars{x}}\,\dd x
={1 \over n+ 1}\int_{0}^{\pi/2}
\sin^{n}\pars{x}\,\dd x - {1 \over n + 1}\,{\cal I}_{n}
\end{align}
\begin{align}
{\cal I}_{n}&={1 \over n + 2}\int_{0}^{\pi/2}\sin^{n}\pars{x}\,\dd x
={n \over n + 2}\bracks{{1 \over n}\int_{0}^{\pi/2}\sin^{n - 2}\pars{x}\,\dd x}
-
{1 \over n + 2}\int_{0}^{\pi/2}\sin^{n - 2}\pars{x}\cos^{2}\pars{x}\,\dd x
\\[3mm]&=
{n \over n + 2}\,{\cal I}_{n - 2} - {1 \over n + 2}\,{\cal I}_{n - 2}
=
{n - 1 \over n + 2}\,{\cal I}_{n - 2}
\end{align}
$$\color{#0000ff}{\large%
{\cal I}_{n} = \int_{0}^{\pi/2}\sin^{n}\pars{x}\cos^{2}\pars{x}
\,\dd x = {n - 1 \sobre n + 2}\,{\cal I}_{n - 2}\,,\quad n \geq 2\,,\qquad
\left\vert%
\begin{array}{rcl}
{\cal I}_{0} & = & {\pi \over 4}
\\[2mm]
{\cal I}_{1} & = & {1 \over 3}
\end{array}\right.}
$$