Evaluar
$$\int_{0}^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\,\mathrm{d}\theta $$
Hace algunos días,he encontrado este interesante integral a partir de un documento sobre generalizada de registro seno de las integrales,pero no puedo recordar el título de la misma. La respuesta de la integral es
\begin{align*} -\mathrm{Ls}_{7}^{\left ( 3 \right )}\left ( \pi \right )=&\frac{9}{35}\log^72+\frac{4}{5}\pi ^{2} \log^52+9\zeta \left ( 3 \right )\log^42-\frac{31}{30}\pi ^{4}\log^32\\ &-\left [ 72\mathrm{Li}_5\left ( \frac{1}{2} \right )-\frac{9}{8}\zeta \left ( 5 \right )-\frac{51}{4}\pi ^{2}\zeta \left ( 3 \right ) \right ]\log^22\\ &+\left [ 72\mathrm{Li}_{5,1}\left ( \frac{1}{2} \right )-216\mathrm{Li}_6\left ( \frac{1}{2} \right )+36\pi ^{2}\mathrm{Li}_4\left ( \frac{1}{2} \right ) \right ]\log2+72\mathrm{Li}_{6,1}\left ( \frac{1}{2} \right )\\ &-216\mathrm{Li}_7\left ( \frac{1}{2} \right )+36\pi ^{2}\mathrm{Li}_5\left ( \frac{1}{2} \right )-\frac{1161}{32}\zeta \left ( 7 \right )-\frac{375}{32}\pi ^{2}\zeta \left ( 5 \right )+\frac{1}{10}\pi ^{4}\zeta \left ( 3 \right ) \end{align*} donde $$\mathrm{Ls}_n^{\left ( k \right )}\left ( \alpha \right ):=-\int_{0}^{\alpha }\theta ^{k}\log^{n-1-k}\left | 2\sin\frac{\theta }{2} \right |\mathrm{d}\theta $$ es el caso generalizado de registro integral del seno y $$\mathrm{Li}_{\lambda ,1}\left ( z \right )=\sum_{k=1}^{\infty }\frac{z^{k}}{k^{\lambda }}\sum_{j=1}^{k-1}\frac{1}{j}$$ es el múltiple polylogarithm.
Encontré una hermosa manera de resolver las integrales de abajo $$\int_{0}^{\frac{\pi }{2}}t^{2n}\log^{m}\left ( 2\cos t \right )\mathrm{d}t $$ Vamos a considerar $$\mathcal{I}\left ( x,y \right )=\int_{0}^{\frac{\pi }{2}}\cos\left ( xt \right )\left ( 2\cos t \right )^{y}\mathrm{d}t$$ Mediante el uso de la función Gamma,la integral de convertirse en $$\mathcal{I}\left ( x,y \right )=\frac{\pi \, \Gamma \left ( y+1 \right )}{2\Gamma \left ( \dfrac{x+y+2}{2} \right )\Gamma \left ( \dfrac{y-x+2}{2} \right )}$$ A continuación, podemos obtener $$\mathcal{I}\left ( x,y \right )=\frac{\pi }{2}\exp\left ( \sum_{k=2}^{\infty }\frac{\left ( -1 \right )^{k}}{k\cdot 2^{k}}\zeta \left ( k \right )\left [ \left ( 2y \right )^{k}-\left ( y-x \right )^{k}-\left ( x+y \right )^{k} \right ] \right )$$ Por otro lado,usando la serie de taylor $$\mathcal{I}\left ( x,y \right )=\sum_{n=0}^{\infty }\frac{\left ( -1 \right )^{n}}{\left ( 2n \right )!}x^{2n}\sum_{m=0}^{\infty }\frac{y^{m}}{m!}\int_{0}^{\frac{\pi }{2}}t^{2n}\log^m\left ( 2\cos t \right )\mathrm{d}t$$ Así,la comparación del coeficiente muestra la respuesta.Por ejemplo $$\int_{0}^{\frac{\pi }{2}}t^{2}\log^2\left ( 2\cos t \right )\mathrm{d}t=4\cdot \frac{\pi }{2}\left [ \frac{12}{4\cdot 16} \zeta \left ( 4 \right )+\frac{1}{2}\frac{8}{2^{2}\cdot 4^{2}}\zeta \left ( 2 \right )^{2}\right ]=\frac{11}{1440}\pi ^{5}$$
Me pregunto ¿se puede utilizar de la misma manera para demostrar que la integral en el principio,si no,hay otra manera de manejarlo?