La matriz a continuación
$\left( \begin{array}{ccccc} 1 & 0 & 1 & 0 & 1 & 0 & 1 & \dots\\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & \dots\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} & \dots\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & \dots\\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & 0 & 0 & \dots\\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 & \dots\\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \dots\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\\ \end{array} \right)$
follows a pattern whereby the first line begins $\{1,0,1,0,1,0,1,0,1,0,1,0\dots\}$
the second: $\{\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},0,0\dots\}$
the third: $\{\frac{1}{3},\frac{1}{3},\frac{1}{3},0,0,0,\frac{1}{3},\frac{1}{3},\frac{1}{3},0,0,0\dots\}$
and so on.
Summing the first $m$ rows together and subtracting $\frac{1}{2}\sum_{k=1}^{m}\frac{1}{k}$ from each element from the resultant array gives a sequence of numbers that fluctuates between positive and negative values. The resultant cummulative plot looks like this:
y = 3000; m = 500;
ListPlot[Accumulate[Total[Take[Flatten[ConstantArray
[#,Ceiling[(y)/Length@#]]], y] & /@ Table[Join[ConstantArray[1/row, row],
ConstantArray[0, row]], {row, 1, m}]] - Sum[1/k, {k, 1, m}]/2]]
where $y$ is the number of columns, and $m$ the number of rows, and is apparently scalable by dividing by $\dfrac{m}{4}$:
Is it true that this is related to the family of Bessel functions (inclusive of trigonometric integrals, which are related to spherical Bessel functions)?
Below is a plot of a Bessel function of the second kind, for illustrative purposes:
given by
$$ Y_0(z)=\dfrac{2}{\pi}\bigg(\bigg(\log(z/2)+\gamma\bigg)\sum_{m=0}^{\infty}\dfrac{(-1)^m}{m!\ \Gamma(m+1)}(z/2)^{2m}+\sum_{k=1}^{\infty}(-1)^{k+1}\sum_{i=1}^{\infty}\dfrac{1}{i}\bigg(\dfrac{(z^2/4)^k}{(k!)^2}\bigg)\bigg) $$
Whether it is the case or not, I would be interested to know why it follows this pattern. The periodicity up to $$ y sigue a un tipo particular de aleatoriedad, visto también en las diferencias entre zeta ceros, por ejemplo. Tengo curiosidad por saber si hay alguna conexión.
Actualización
trazado con este (ridículamente largas) trozos de código, gracias a Ruslan's respuesta a continuación.