$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ \begin{align} I&\equiv\int\root{\sin\pars{x - \alpha} \over \sin\pars{x + \alpha}}\,\dd x =\int\root{\sin\pars{x}\cos\alpha - \cos\pars{x}\sin\pars{\alpha}\over \sin\pars{x}\cos\alpha + \cos\pars{x}\sin\pars{\alpha}}\,\dd x \\[3mm]&=\int\root{\tan\pars{x} - \beta\over \tan\pars{x} + \beta}\,\dd x\quad\mbox{where}\quad\beta \equiv\tan\pars{\alpha} \end{align}
\begin{align} I&=\ \overbrace{\int\root{\tan\pars{x} - \beta\over \tan\pars{x} + \beta}\,\dd x} ^{\ds{\mbox{Set}\ x \equiv t/2\ \imp\ t = 2x}}\ =\ \half\ \overbrace{\int\root{\tan\pars{t/2} - \beta\over \tan\pars{t/2} + \beta}\,\dd t} ^{\ds{\mbox{Set}\ y \equiv \tan\pars{t/2}\ \imp\ t = 2\arctan\pars{y}}} \\[3mm]&=\half\int\root{y - \beta \over y + \beta}\,{2\,\dd y \over 1 + y^{2}} \end{align}
Con $\ds{{y - \beta \over y + \beta} \equiv z}$ : \begin{align} I&=2\beta\int {z\,\dd z \over \pars{\beta^{2} + 1}z^{2} + 2\pars{\beta^{2} - 1}z + \beta^{2} + 1} \\[3mm]&={2\beta \over \beta^{2} + 1}\int {z\,\dd z \over z^{2} + 2\bracks{\pars{\beta^{2} - 1}/\pars{\beta^{2} + 1}}z + 1} =\sin\pars{2\alpha} \int {z\,\dd z \over z^{2} - 2\cos\pars{2\alpha}z + 1} \end{align} Puedes tomarlo desde aquí.