Para cualquier entero positivo $n$, muestran que $\sum_{d|n}\sigma(d) = \sum_{d|n}(n/d)\tau(d)$
Yo :
Lado izquierdo :
$\begin{align} \sum_{d|p^k}\sigma (d) &= \sigma(p^0) + \sigma(p^1) + \sigma(p^2) + \cdots + \sigma(p^k) \\ &= \dfrac{p^{0+1}-1}{p-1} + \dfrac{p^{1+1}-1}{p-1} + \cdots + \dfrac{p^{k+1}-1}{p-1} \\&= \dfrac{1}{p-1}\left( (p + p^2 + \cdots + p^{k+1}) - (k+1)\right) \\&= \dfrac{1}{p-1}\left(\dfrac{p(p^{k+1}-1)}{p-1}- (k+1)\right) \\
\end{align}$
No estoy seguro de si estoy en el camino correcto; esto no parezca sencillo. Alguna ayuda ?