Hay una función, llamada $f(x)$, donde:
$$ f(x) = 2(x-a) + 2\cos x (\sin x - b) $$
$un$ and $b$ are constants. I would like to find all the possible values of $x$ where $ f(x) = 0 $
He tratado de resolver de esta manera:
Primero he simplificado la ecuación:
$$ 2x - 2a + 2\cos x\sin x - 2b\cos x = 0 $$
A continuación, he sustituido el$2\cos x\sin x$$\sin 2x$, y se trasladó al otro lado:
$$ 2a - 2x + 2b\cos x = \sin 2x$$
Después de que me sirve la arcsine
función de:
$$ x_1 = \frac{1}{2} \arcsin(2a - 2x + 2b\cos x) + 2n\pi$$
$$ x_2 = \pi - \frac{1}{2} \arcsin(2a - 2x + 2b\cos x) + 2n\pi$$
I don't know how to continue it. It is probably a dead end. Could you please give me hints about how should I solve it?
I would like to express $x$ without using $x$.