8 votos

¿Por qué la computación de Fatou de coordenadas es tan difícil?

Yo estoy tratando de hacer que las imágenes de Fatou coordinar para algún polinomio de mapas. Si no estoy equivocado no es explícito fórmula general/método para calcular la Fatou coordinar cerca parabólico de punto fijo.

  1. Es un ejemplo de mapa para que explícita fórmula de Fatou de coordenadas es conocido ?
  2. ¿Por qué la computación de Fatou de coordenadas es tan difícil ?

Soy muy nuevo en teoría, así que estoy buscando un simple, intuitiva respuesta. También me gustaría pasar de la teoría a los cálculos y toma de imágenes.

TIA

Adam

5voto

zeroasterisk Puntos 165

Se Jagy tiene una visión general de la formal Fatou de coordenadas (Jean Ecalle en Orsay) para una parabólica punto en mathoverflow; he publicado algunos pari-gp código para implementar Ecalle de la solución a continuación. Cerca, pero no exactamente en una parabólica punto, el problema es mucho más difícil. Dar una función de $f(z)$, llamamos a la Fatou, Coordinar, Abel función de $\alpha(z)$.

$$\alpha(f(z)) = \alpha(z)+1$$

Then the iterated function would be $f^{o z} = \alpha^{-1}(z)$, and I have written a program that calculates $\alpha^{-1}$ for tetration, see the tetration forum, and investigated the properties near the parabolic fixed point (which is a branch point for this family of complex functions). I have used the same method to calculate $\alpha^{-1}(z)$ for $x^2+c$ near the parabolic branch point, c=0.25, but have not posted it anywhere. I would also be interested in any other responses.

Some other thoughts. Consider the case where $f(x)=x^2+0.26$, which has two fixed points, $0.5+/-0.1i$. The solution I was looking for treats both of these fixed points symmetrically and is based on extending Kneser's solution for tetration, which involves a Riemann mapping, which helps explain why computing such solutions is difficult. If you only want to calculate $\alpha(z)$ for one of the two fixed points, then the Schroeder function provides a simple well defined solution for $\alpha(z)$.

Finally, nearby c=0.25, there are also much more complicated parabolic points, where $f^{on}(z)$ is a parabolic point. Near such a point do we compute the Fatou coordinate for $f(z)$, or $f^{on}(z)$? Will Jagy's link gives a solution for the Fatou coordinate of $f^{on}(z)$. I also now know to compute the solution for $\alpha^{-1}(z)$ for $f(z)$ using both fixed points; I tried asking a question on math overflow, but I didn't get any relevant responses :(

You could also search parabolic implosion on the web, but I haven't seen any papers showing how to calculate $\alpha(z)$.

EDIT Here is a pari-gp program to implement Jean Ecalle's formal Abel Series, Fatou Coordinate solution for parabolic points with multiplier=1. This is an asymptotic non-converging series, so there is an optimal number of terms to use, so you may have to iterate $f$ or $f^{-1}$ un par de veces para llegar de manera óptima resultados precisos, de modo que el coeffient está más cerca del punto fijo de cero.

abelseries(fz,n) = {
  local(i,z,ns,m,rem);
  kabel=0;
  klog=0;
  m=1;
  while (polcoeff(fz,m+1)==0,m++);
  print("terms with negative coeffients= "m);
  for (i=-m,n,
    if (i==0, klog=acoeff, kabel=kabel+acoeff*x^i);
    rem = Ser(subst(kabel,x,fz) - kabel + klog*log(fz/x) - 1);
    z=polcoeff(rem,i+m);
    z=subst(z,acoeff,x);
    ns=-polcoeff(z,0)/polcoeff(z,1);
    kabel=subst(kabel,acoeff,ns);
    klog=subst(klog,acoeff,ns);
  );
  return([kabel,klog]);
}
/* evaluate kabel and klog after generating abelseries */
eabel(z) = { 
  z=subst(kabel,x,z)+klog*log(z);
  return(z);
}
fz = x+x^2;
abelseries(fz,9); /* initialize kabel and klog for x^2+x */
for (i=-1,9, if (i==0, print(klog"*log(x)"), print(polcoeff(kabel,i)"*x^"i)));
print (eabel(0.2)" "eabel(subst(fz,x,0.2)));
fz = x-2*x^3+x^4;
abelseries(fz,9); /* initialize kabel and klog for for x-2*x^3+x^4 */
print (eabel(0.2)" "eabel(subst(fz,x,0.2)));

4voto

zeroasterisk Puntos 165

Adán,

Ver Henryk Trapmann post sobre Perturbado Fatou Coordenadas en el tetration foro

Dado $f=x^2+x+0.01$, donde el $\epsilon=0.01$ es la perturbación de la parabólica punto, en el enlace que demuestra la existencia de la Fatou de Coordenadas definido entre los dos puntos fijos, $\alpha(x)$. Aquí está mi cálculo de la inversa de Fatou Coordinar, $\alpha^{-1}(x)$$f(x)$. Mi solución requiere que los $\alpha^{-1}(i\infty)=0.1i$, e $\alpha^{-1}(-i\infty)=-0.1i$, dos puntos fijos para $f(x)$. El algoritmo se basa en el programa que escribí para implementar Kneser la solución para tetration, ver también la tetration foro. Para los reales positivos valores de Épsilon, el cómputo requiere un mapeo de Riemann, que es difícil de calcular.

$$\alpha^{-1}(x) = f^{ox}(0)$$

There is a branch singularity at $\alpha^{-1}(-11.701)\aprox-0.5$. For normal Mandelbrots iterating $x^2+c$, $\epsilon=0.01 \mapsto c=0.26$, and the branch singularity at $-0.5 \mapsto 0$, where $0$ is the Mandelbrot starting point. The $\alpha^{-1}(x)$ function increases to infinity after the branch point, and is analytic to the right of that branch point in the complex plane for all imaginary values.

=       0
+x^ 1*  0.010016699568842293
+x^ 2* -0.000050418367246083195
+x^ 3*  0.000034178173550238976
+x^ 4* -0.00000060255845085496712
+x^ 5*  0.00000014728664516498046
+x^ 6* -0.0000000047635866181065753
+x^ 7*  0.00000000068914925444492225
+x^ 8* -3.2193920179857513 E-11
+x^ 9*  3.4764175712195070 E-12
+x^10* -2.0345413419304956 E-13
+x^11*  1.8714590352026207 E-14
+x^12* -1.2518981757319611 E-15
+x^13*  1.0595108736880268 E-16
+x^14* -7.6520364024012775 E-18
+x^15*  6.2226912074002442 E-19
+x^16* -4.6927195239006338 E-20
+x^17*  3.7527923737871100 E-21
+x^18* -2.9008512593943895 E-22
+x^19*  2.3081020995208996 E-23
+x^20* -1.8107093728645096 E-24

I have also done calculations for complex values of $\epsilon$, where the function is defined in between the two fixed points; I haven't posted them.

The op mentioned c=-0.75, where iterating $s \mapsto y^2-3/4$ corresponds to iterating $f(x)= x^2-x$, where $x=y+1/2$. The two fixed points of $f(x)$ are 0, which has $\lambda=-1$, and is rationally indifferent, and the other fixed point is 2. The claim is that if you start with iterating $x\mapsto x^2+0.26$, which is equivalent to the Taylor series above. Now slowly change the perturbation, staying in the upper half of the complex plane, until you get to $x\mapsto x^2-0.El 75$, which is equivalent to $x\mapsto x^2-x$, then you arrive at this merged solution for the iterated function. Below, I generate the Taylor series for $f^{ox}(0.3125)$, accurate to about a thirteen decimal digits. The novel algorithm starts with our solution for merged tetration for complex bases, and is modified to allow computing results where $\lambda$ is rationally indifferent. The algorithm is partially described at this link; tetration forum for e^-e. Convergence for the computation algorithm is not proven, but is based on what I understand about perturbed fatou coordinates. Here is the Taylor series of this interesting, but non standard inverse Fatou Coordinate for this function. I don't know if anyone else has ever computed these solutions or not.

f^x =    0.31250000000000 
+x^ 1* ( 0.043182808486163 + 1.0774060901730*I)
+x^ 2* (-1.9578359017697 + 0.23834297940039*I)
+x^ 3* (-0.68144363913437 - 2.5067898772210*I)
+x^ 4* ( 2.4811891207280 - 1.3195628373657*I)
+x^ 5* ( 1.9060571037156 + 1.8788044842752*I)
+x^ 6* (-0.91423964176752 + 2.1371762776650*I)
+x^ 7* (-1.8715957209642 + 0.051769912154558*I)
+x^ 8* (-0.68715768653121 - 1.2344260154422*I)
+x^ 9* ( 0.51937894568058 - 0.86283969405588*I)
+x^10* ( 0.68276123212209 - 0.0090904579966679*I)
+x^11* ( 0.24910214163161 + 0.36602794490275*I)
+x^12* (-0.098162261449123 + 0.25779714775530*I)
+x^13* (-0.15990546838427 + 0.043838294866587*I)
+x^14* (-0.076655855358702 - 0.058560468392113*I)
+x^15* (-0.00086748306390932 - 0.054473578651271*I)
+x^16* ( 0.022902729497259 - 0.019288163563319*I)
+x^17* ( 0.015810454394089 + 0.0027550230200182*I)
+x^18* ( 0.0043134980471593 + 0.0072127736838463*I)
+x^19* (-0.0013064327373118 + 0.0041039541577587*I)
+x^20* (-0.0019690404251635 + 0.00089522635627084*I)

And here is a graphical image of iterating $f(x)=x^2-x$, where I show $f^{ox}(0.3125)$ in the complex plane. You can see the indifferent rationally indifferent fixed point of 0, which is the limiting value as $x\i\infty$, with a pseudo period=2. The fixed point of 2 is on the left, with its pseudo period=$\frac{2\pi i}{\ln(3)}=5.719 i$; the solution converges to this standard Schroeder function solution as imaginary(z) goes to $-\infty$. Hay una sucursal en -2, donde f(x)=0.5. Las líneas de la cuadrícula son cada dos unidades. El gráfico de rango que se muestra es real -4 a +6, y el imaginario -6.6 a +2. enter image description here

2voto

Adam Puntos 639

Probablemente he encontrado el ejemplo de la función para la que explícita fórmula de Fatou de coordenadas es conocido ( donde c es una parabólica parámetro ) Sobre la derivada de la dimensión de Hausdorff de la cuadrática conjuntos de Julia por Ludwik Jaksztas

$$f(z) = z^2-3/4$$

$$\widehat{z} = h_c(z) = -i(z+\frac{1}{2})$$

then Fatou coordinate Z :

$$Z_c (\widehat{z}) = -\frac{1}{2\widehat{z}} $$

I have made image of small attracting petals P using such coordinate, using property that a right half-plane in the Z coordinates are called small pertals

$$P = \{ z : Z_c(h_c(z))>=0 \}$$

Attracting petals near parabolic fixed points

La forma de estos "pétalos" ( triángulos ) sugieren que, por encima de coordinar están preparados coordinar o pre-Fatou coordinar

He comprobado mi código para la creación de imagen y encontré algunos errores. Una buena función para calcular la parte real de Fatou coordinar

$$ux = re(Z_c)$$

es :

double complex GiveU(complex double Z)
{
  double Hx, Hy; 
  double t; // temp 
  // Z = Zx +Zy*I
  double Zx = creal(Z);
  double Zy = cimag(Z);
  // U = Ux +Uy*I
  double Ux; // re(U)  
  double Uy; // im(U) 
  // from z to h 
  Hx= Zy;
  Hy= -Zx - 0.5;
  // from h to u 
  t = Hx*Hx+Hy*Hy;
  Ux = -Hx*Hx - (Hy*Hy)/(2*t*t);
  Uy = (Hx*Hy)/(t*t);
  return (Ux+Uy*I);
 }

Comprobar resultados de la búsqueda para puntos sobre el eje real de punto crítico z=0 al punto fijo z = -0.5 ( todos los puntos shlould estar dentro de la atracción de pétalo ) :

i = 0; z.x =  0.000000;   u.x = -2.000000 
i = 1; z.x = -0.187500;  u.x    = -5.120000  
i = 2; z.x = -0.238998;  u.x    = -7.339791 
i = 3; z.x = -0.269918;  u.x    = -9.445030 
i = 4; z.x = -0.291475;  u.x    = -11.498873   
i = 5; z.x = -0.307719;  u.x    = -13.523753 
i = 6; z.x = -0.320570;  u.x    = -15.530317   
i = 7; z.x = -0.331087;  u.x    = -17.524447  
i = 8; z.x = -0.339912;  u.x    = -19.509720  
i = 9; z.x = -0.347460;  u.x    = -21.488463  
i = 10; z.x = -0.354018; u.x    = -23.462264 
i = 11; z.x = -0.359786; u.x    = -25.432250  
i = 12; z.x = -0.364912; u.x    = -27.399247 
i = 13; z.x = -0.369510; u.x    = -29.363871  
i = 14; z.x = -0.373664; u.x    = -31.326596   
i = 15; z.x = -0.377442; u.x    = -33.287790  
i = 16; z.x = -0.380898; u.x    = -35.247743   
i = 17; z.x = -0.384076; u.x    = -37.206688    
i = 19; z.x = -0.389733; u.x    = -41.122270  
i = 20; z.x = -0.392266; u.x    = -43.079188   

Como se puede ver todos los valores están por debajo de cero ( ?) y ux(critial punto) no es un cero. Puede normalizar mediante :

double complex GiveNormalizedU(complex double Z, double ux0)
{
 // U = Ux +Uy*I
 double complex U;
 double Ux; // re(U)  
 double Uy; // im(U) 
 U = GiveU(Z);
 Ux = fabs(creal(U)) - fabs(ux0); // re(U)  
 Uy = cimag(U);
 return (Ux+Uy*I); 
}

donde ux0 es un ux(punto crítico ) = -2.0; a Continuación, los resultados son :

i = 0; z.x = 0.000000; u.x = 0.000000 ;  
i = 1; z.x = -0.187500; u.x    = 3.120000 ; 
i = 2; z.x = -0.238998; u.x    = 5.339791 ;
i = 3; z.x = -0.269918; u.x    = 7.445030 ;  
i = 4; z.x = -0.291475; u.x    = 9.498873 ;   
i = 5; z.x = -0.307719; u.x    = 11.523753 ;  
i = 6; z.x = -0.320570; u.x    = 13.530317 ;  
i = 7; z.x = -0.331087; u.x    = 15.524447 ;
i = 8; z.x = -0.339912; u.x    = 17.509720 ; 
i = 9; z.x = -0.347460; u.x    = 19.488463 ;   
i = 10; z.x = -0.354018; u.x    = 21.462264 ;
i = 11; z.x = -0.359786; u.x    = 23.432250 ;  
i = 12; z.x = -0.364912; u.x    = 25.399247 ; 
i = 13; z.x = -0.369510; u.x    = 27.363871 ;   
i = 14; z.x = -0.373664; u.x    = 29.326596 ;   
i = 15; z.x = -0.377442; u.x    = 31.287790 ;   
i = 16; z.x = -0.380898; u.x    = 33.247743 ;   
i = 17; z.x = -0.384076; u.x    = 35.206688 ;   
i = 18; z.x = -0.387011; u.x    = 37.164812 ;   
i = 19; z.x = -0.389733; u.x    = 39.122270 ;   
i = 20; z.x = -0.392266; u.x    = 41.079188 ; 

El uso de la función obtengo diferentes de la imagen de la atracción de los pétalos : enter image description here


Aquí está otra prueba :

i = 0; z.x = 0.000000; u.x = 0.000000 ; du = NA
i = 1; z.x = -0.187500; u.x = 3.120000 ; du = 3.120000
i = 2; z.x = -0.238998; u.x = 5.339791 ; du = 2.219791
i = 3; z.x = -0.269918; u.x = 7.445030 ; du = 2.105239
i = 4; z.x = -0.291475; u.x = 9.498873 ; du = 2.053843
i = 5; z.x = -0.307719; u.x = 11.523753 ; du = 2.024880
i = 6; z.x = -0.320570; u.x = 13.530317 ; du = 2.006564
i = 7; z.x = -0.331087; u.x = 15.524447 ; du = 1.994130
i = 8; z.x = -0.339912; u.x = 17.509720 ; du = 1.985273
i = 9; z.x = -0.347460; u.x = 19.488463 ; du = 1.978743
i = 10; z.x = -0.354018; u.x = 21.462264 ; du = 1.973801
i = 11; z.x = -0.359786; u.x = 23.432250 ; du = 1.969987
i = 12; z.x = -0.364912; u.x = 25.399247 ; du = 1.966996
i = 13; z.x = -0.369510; u.x = 27.363871 ; du = 1.964624
i = 14; z.x = -0.373664; u.x = 29.326596 ; du = 1.962725
i = 15; z.x = -0.377442; u.x = 31.287790 ; du = 1.961194
i = 16; z.x = -0.380898; u.x = 33.247743 ; du = 1.959953
i = 17; z.x = -0.384076; u.x = 35.206688 ; du = 1.958945
i = 18; z.x = -0.387011; u.x = 37.164812 ; du = 1.958125
i = 19; z.x = -0.389733; u.x = 39.122270 ; du = 1.957458
i = 20; z.x = -0.392266; u.x = 41.079188 ; du = 1.956918

Aquí :

  • i es el número de la iteración ( tenga en cuenta que en cada iteración significa que f^2
  • z.x es una parte real del complejo punto de dinámicas de avión
  • u.x es una parte real de la aproximados Fatou coordenadas de z
  • $du = u(z_{i+1}) - u(z_i) $

así que cuando z es cambiar de$z_i$$f^2(z_i)$, entonces u es el cambio de $u_i$ $u_i+2$aproximadamente ( cerca de la traducción por parte de 2 ):

$$f^2 : z \mapsto f(f(z))$$ $$Z_c : u(z) \mapsto u(z) + 2 $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X