7 votos

Tropicalizing el aprendizaje

Podría alguien decirme si es posible hacer tropical geometría SIN conocimientos(o con muy pocos) de la geometría algebraica (a la Hartshorne)? Por "hacer geometría tropical" quiero decir, entender la importancia teoremas así como la lectura de la literatura.

En otras palabras, supongamos que tengo un fondo en la combinatoria, gráficos, etc., y estoy en busca de un problema (y su solución) en la zona Tropical de la Geometría, pero tal vez yo realmente no sé mucho acerca de los esquemas, poleas, Cech Cohomology?. Iba yo a tener un cambio para tener éxito? Esto tiene sentido, ya que Hartshorne la AG puede tomar algún tiempo para dominar.

Hormigón argumentos en contra/a favor de sería muy apreciada.

7voto

sickgemini Puntos 2001

Sí, es posible. Las personas que han hecho tropical excelente trabajo con un poco de Geometría Algebraica fondo incluyen Federico Ardila, Michael Joswig de Josefina y Yu. (Espero no insultar a cualquiera de estas personas diciendo que ellos no me parecen tener mucho geometría algebraica.)

Sin embargo, he tenido la mala suerte de introducir a la gente a tropical geometría sin hablar valores de los campos, de Grobner degeneraciones, tóricas de variedades y el otro algebraica de la tecnología. Me puede dar un agradable coloquio de hablar o de escribir un buen expositiva de papel donde yo brillo a través de este material. Pero esto deja al lector sin una intuición para averiguar cuáles son las preguntas razonable preguntar, o alguna idea de donde no trivial de resultados podría venir de. Esto es especialmente cierto debido a que tanto tropicales trabajo ahora no es la solución de problemas específicos formulados por los expertos, sino en la búsqueda de las definiciones y teoremas para hacer precisa de los fenómenos que las personas han observado.

AGREGÓ también me gusta Ben respuesta. Hay partes de la geometría tropical que uso muy grave la geometría algebraica, pero también hay partes donde se usa para la motivación y la intuición. Probablemente se podría obtener una gran cantidad de lo que usted necesita de la Cox-Poco-O'Shea, de Fulton "Curvas Algebraicas" y alguna buena referencia en Grassmannians y hyperplane arreglos.

4voto

Chad Cooper Puntos 131

Tengo un no-tan-hormigón argumento en contra, que es que la escuela de postgrado no es el momento para tratar de aprender las cosas "barato". Esto es más comprensible, más adelante en la vida académica, pero la escuela de posgrado se supone que es un tiempo en el que ampliar sus horizontes.

Por otro lado, no estoy seguro de si Hartshorne es el lugar para comenzar; conseguir una decente comprensión de los afín y proyectiva variedades sobre C es que sería un poco más sencillo (tal vez a partir de cualquier parte de la Cox, Poco y O'Shea usted no entiende, seguido por Miller y Sturmfels?).

1voto

MojoFilter Puntos 3730

Recientemente, M. Aschenbrenner, D. Lippel, y S. Starchenko utiliza un enfoque de análisis no estándar para reprobar un teorema básico en el tema (el Bieri-Arboledas Teorema sobre las variedades tropicales tropicales amebas). Aquí es un buen resumen de la argumentación, que es elemental y completamente libre de estilo contemporáneo y la geometría algebraica.

Advertencia: sé muy poco acerca de la geometría tropical y no tengo idea de si el modelo teórico de los métodos puede ser empujado más para probar otros resultados en el campo.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X