Podemos aplicar la siguiente proposición a $u_{n}=\dfrac{1}{n!}$, una prueba de que se puede encontrar en este post de la mina en portugués. Traduzco a continuación.
La proposición. Suponga que para todo $n$, $u_{n}>0$ y $\lim_{n\rightarrow
\infty }\dfrac{u_{n+1}}{u_{n}}=b$. Then $$\lim_{n\rightarrow \infty }\sqrt[n]{u_{n}}=b.$$
Prueba. $\lim_{n\rightarrow
\infty }\dfrac{u_{n+1}}{u_{n}}=b$ implies that there exists a natural number $N$ such that for $n\ge$ N tenemos
$$
\begin{equation*}
b-\delta <\frac{u_{N+k+1}}{u_{N+k}}<b+\delta ,\qquad 0\leq k\leq n-N-1.
\end{ecuación*}
$$
La multiplicación de estos $n-N$ desigualdades, obtenemos
$$
\begin{eqnarray*}
\left( b-\delta \right) ^{n-N} &=&\prod_{k=0}^{n-N-1}\left( b-\delta \right)
<\prod_{k=0}^{n-N-1}\frac{u_{N+k+1}}{u_{N+k}}<\prod_{k=0}^{n-N-1}\left(
b+\delta \right) =\left( b+\delta \right) ^{n-N}\end{eqnarray*}
$$
Desde que el producto se $\displaystyle\prod_{k=0}^{n-N-1}\dfrac{u_{N+k+1}}{u_{N+k}}=\dfrac{u_{n}}{u_{N}}$, por lo tanto tenemos
$$
\begin{eqnarray*}
\left( b-\delta \right) ^{n-N} &<&\frac{u_{n}}{u_{N}}<\left( b+\delta
\right) ^{n-N}\end{eqnarray*}
$$
Multiplicando por $u_N$, obtenemos
$$
\begin{eqnarray*}
\left( b-\delta \right) ^{n-N}u_{N} &<&u_{n}<\left( b+\delta \right)
^{n-N}u_{N}.
\end{eqnarray*}
$$
Por lo tanto
$$
\begin{equation*}
\left( b-\delta \right) \sqrt[n]{\left( b-\delta \right) ^{-N}u_{N}}<\sqrt[n]{u_{n}}<\left( b+\delta \right) \sqrt[n]{\left( b+\delta \right) ^{-N}u_{N}}.
\end{ecuación*}
$$
Desde $\lim_{n\to \infty}\sqrt[n]{\left( b+\delta \right) ^{-N}u_{N}}=1$, existe un número natural $N^{\prime }$ tal que para $n\geq N^{\prime }$, $$1-\delta<\sqrt[n]{\left( b-\delta \right) ^{-N}u_{N}}<1+\delta$$
lo que significa que
$$
\begin{equation*}
b-\delta -b\delta +\delta ^{2}=(1-\delta
)\left( b-\delta \right) <\sqrt[n]{u_{n}}<\left( b+\delta \right) (1+\delta
)=b+b\delta +\delta +\delta ^{2}.
\end{ecuación*}
$$
Para $\varepsilon =\delta +b\delta +\delta ^{2}$ e $n\geq \max
\{N,N^{\prime }\}$
$$
\begin{equation*}
b-\varepsilon <\sqrt[n]{u_{n}}<b+\varepsilon ,
\end{ecuación*}
$$
lo que demuestra la proposición. $\qquad\square$
Para $u_{n}=\dfrac{1}{n!}$, tenemos
$$
\begin{equation*}
\lim_{n\rightarrow \infty }\frac{u_{n+1}}{u_{n}}=\lim_{n\rightarrow \infty }
\frac{1/(n+1)!}{1/n!}=\lim_{n\rightarrow \infty }\frac{1}{n+1}=0.
\end{ecuación*}
$$
En consecuencia,
$$
\begin{equation*}
\lim_{n\rightarrow \infty }\sqrt[n]{u_{n}}=\lim_{n\rightarrow \infty }\sqrt[n]{1/n!}=0.
\end{ecuación*}
$$