$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{\int_{0}^{\infty}\expo{-sx}x^{-1}\sin\pars{x}\,\dd x
=\arctan\pars{1 \over s}:\ {\large ?}.\quad s\ >\ 0}$.
\begin{align}&\color{#66f}{\large%
\int_{0}^{\infty}\expo{-sx}x^{-1}\sin\pars{x}\,\dd x}
=\int_{0}^{\infty}\expo{-sx}\,\ \overbrace{%
\half\int_{-1}^{1}\expo{\ic k x}\,\dd k}^{\ds{\color{#c00000}{x^{-1}\sin\pars{x}}}}\,\ \dd x
\\[5mm]&=\half\int_{-1}^{1}\int_{0}^{\infty}\expo{\pars{-s + \ic k}x}\,\dd x\,\dd k
=\half\int_{-1}^{1}{-1 \over -s + \ic k}\,\dd k
=\half\int_{-1}^{1}{s + \ic k \over k^{2} + s^{2}}\,\dd k
=\int_{0}^{1}{s\,\dd k \over k^{2} + s^{2}}
\\[5mm]&=\int_{0}^{1/s}{\dd k \over k^{2} + 1}
=\color{#66f}{\large\arctan\pars{1 \over s}}
\end{align}