Dejemos que $f(x) = x^2$ y $g(x) = -x^2 + 2x - 2 \implies \dfrac{d}{dx}(f(x))|_{x = a} = 2a$ y $\dfrac{d}{dx}(g(x))|_{x = b} = -2b + 2$
$2a = -2b + 2 \implies a = 1 - b \implies$
$A: (1 - b, (1 - b)^2), B: (b, -b^2 + 2b - 2) \implies m_{AB} = \dfrac{2b^2 - 4b + 3}{1 - 2b} = -2b + 2 \implies $ $2b^2 - 2b - 1 = 0 \implies b = \dfrac{1 \pm \sqrt{3}}{2}$
Utilizando $b = \dfrac{1 + \sqrt{3}}{2} \implies $
$A: (\dfrac{1 - \sqrt{3}}{2},\dfrac{2 - \sqrt{3}}{2}), B: (\dfrac{1 + \sqrt{3}}{2},\dfrac{\sqrt{3} - 4}{2}) \implies m_{AB} = 1 - \sqrt{3} \implies $ $ \boxed{y = (1 - \sqrt{3})x + \dfrac{\sqrt{3} - 2}{2}} $
Utilizando $b = \dfrac{1 - \sqrt{3}}{2} \implies A^{'}: (\dfrac{1 + \sqrt{3}}{2}, \dfrac{2 + \sqrt{3}}{2}), B^{'}: (\dfrac{1 - \sqrt{3}}{2}, \dfrac{-\sqrt{3} - 4}{2}) \implies$ $m_{A^{'}B^{'}} = 1 + \sqrt{3} \implies \boxed{y = (1 + \sqrt{3})x - \dfrac{\sqrt{3} + 2 }{2}}. $