Un par de años he desarrollado una solución para las ecuaciones de Navier-Stokes y como aún no han sido capaces de localizar una versión similar de la solución. Me gustaría saber si alguien ha visto una solución como esta o puede detectar errores significativos.
La versión de las ecuaciones que he trabajado son como sigue, donde me puse a $\nu = 1$:
$\partial_tu+u\partial_xu+v\partial_yu+w\partial_zu = -\partial_xp + \nu(\partial_{xx}u+\partial_{yy}u+\partial_{zz}u)$
$\partial_tv+u\partial_xv+v\partial_yv+w\partial_zv = -\partial_yp + \nu(\partial_{xx}v+\partial_{yy}v+\partial_{zz}v)$
$\partial_tw+u\partial_xw+v\partial_yw+w\partial_zw = -\partial_zp + \nu(\partial_{xx}w+\partial_{yy}w+\partial_{zz}w)$
$\partial_xu+\partial_yv+\partial_zw=0$
La original solución que se me ocurrió es (reconociendo que $\sin^2(x)+\cos^2(x)=1$, lo cual es importante para mantener ampliado para ver fácilmente las cancelaciones):
$p =-(\sin^2(x) + \cos^2(x))e^{-\frac{1}{2}(|y|+|z|+|t|)}$
$u =\sin(x)e^{-\frac{1}{2}(|y|+|z|+|t|)}$; $v =\cos(x)e^{-\frac{1}{2}(|y|+|z|+|t|)}$; $w =\cos(x)e^{-\frac{1}{2}(|y|+|z|+|t|)}$
He comprobado a ver si funciona esto varias veces, pero siempre se han preguntado si he cometido un error, las correspondientes derivaciones están por debajo, donde$cos(x)=c_x$$sin(x) =s_x$.
$\partial_x{u} =c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_x{v} =-s_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_x{w} =-s_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$
$\partial_y{u} =\frac{-1}{2}s_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_y{v} =\frac{-1}{2}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_y{w} =\frac{-1}{2}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$
$\partial_z{u} =\frac{-1}{2}s_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_z{v} =\frac{-1}{2}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_z{w} =\frac{-1}{2}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$
$\partial_t{u} =\frac{-1}{2}s_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_t{v} =\frac{-1}{2}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_t{w} =\frac{-1}{2}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$
$\partial_{xx}{u} =-s_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_{xx}{v} =-c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_{xx}{w} =-c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$
$\partial_{yy}{u} =\frac{1}{4}s_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_{yy}{v} =\frac{1}{4}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_{yy}{w} =\frac{1}{4}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$
$\partial_{zz}{u} =\frac{1}{4}s_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_{zz}{v} =\frac{1}{4}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\partial_{zz}{w} =\frac{1}{4}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$
$\sum{} =\frac{-1}{2}s_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\sum{} =\frac{-1}{2}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$; $\sum{} =\frac{-1}{2}c_xe^{-\frac{1}{2}(|y|+|z|+|t|)}$
$u\partial_x{u} =s_xc_xe^{-(|y|+|z|+|t|)}$; $u\partial_x{v} =-s^2_xe^{-(|y|+|z|+|t|)}$; $u\partial_x{w} =-s^2_xe^{-(|y|+|z|+|t|)}$
$v\partial_y{u} =\frac{-1}{2}s_xc_xe^{-(|y|+|z|+|t|)}$; $v\partial_y{v} =\frac{-1}{2}c^2_xe^{-(|y|+|z|+|t|)}$; $v\partial_y{w} =\frac{-1}{2}c^2_xe^{-(|y|+|z|+|t|)}$
$w\partial_z{u}=\frac{-1}{2}s_xc_xe^{-(|y|+|z|+|t|)}$; $w\partial_z{v}=\frac{-1}{2}c^2_xe^{-(|y|+|z|+|t|)}$; $w\partial_z{w}=\frac{-1}{2}c^2_xe^{-(|y|+|z|+|t|)}$
$\sum{}=(s_xc_x-s_xc_x)e^{-(|y|+|z|+|t|)}$;$\sum{}=-(s^2_x + c^2_x)e^{-(|y|+|z|+|t|)}$;$\sum{}=-(s^2_x + c^2_x)e^{-(|y|+|z|+|t|)}$
He jugado un poco con la idea de que en realidad hay tres versiones de la solución, que está orientado para cada eje, como se ilustra a continuación:
Donde la presión componente puede ser añadido como sigue:
Nota: Sólo un apéndice, como se señaló en los comentarios, mi primera versión de este fue sin el valor absoluto de los símbolos, que permite la solución de enfoque infinito de valores en negativo coordenadas. Mi pensamiento inicial fue que los valores absolutos fueron suficientes restricción, pero como se señaló en los comentarios esto se traduce en una discontinuidad en algunos de los derivados cuando se establecen los valores a cero. Todavía no he explorado si esto es una verdadera singularidad o una coordenada uno, ya que la solución aparece singularidad libre en el positivo de dominio.