Otro enfoque es el uso común de representación integral de Dirichlet eta función, junto con una representación integral de la zeta de Hurwitz función.
En concreto, se puede utilizar $$\eta(s) = \frac{1}{\Gamma(s)}\int_{0}^{\infty} \frac{x^{s-1}}{1+e^{x}} \, dx , \quad \text{Re}(s) >0,\tag{1}$$ and $$\zeta(s,z) = \frac{1}{\Gamma(s)}\int_{0}^{\infty} \frac{x^{s-1}e^{-zx}}{1-e^{-x}} \, dx \tag{2}, \quad (\text{Re}(s) >1, \, \text{Re}(z) >0). $$
De $(2)$ se sigue que
$$ \begin{align} \zeta(s)-\zeta \left(s, \frac{3}{2} \right) &= \frac{1}{\Gamma(s)} \int_{0}^{\infty}\frac{x^{s-1}}{1-e^{-x}} \left(e^{-x}-e^{-(3/2)x} \right) \\ &= \frac{2^{s}}{\Gamma(s)} \int_{0}^{\infty} \frac{u^{s-1}}{1-e^{-2u}} \left(e^{-2u} - e^{-3u} \right) \, du \\ &= \frac{2^{s}}{\Gamma(s)} \int_{0}^{\infty} \frac{u^{s-1}e^{-2u}} {1+e^{-u}} \, du \\ &= \frac{2^{s}}{\Gamma(s)} \int_{0}^{\infty} \frac{u^{s-1}e^{-u}} {1+e^{u}} \, du, \quad \text{Re}(s) >0. \end{align}$$
Y el uso de $(1)$, obtenemos $$ \begin{align} &\sum_{n=1}^{\infty} \frac{(-1)^{n+1} }{n(n+1)} \, \eta(n) \\ &= \sum_{n=1}^{\infty}\frac{(-1)^{n+1} }{n(n+1)}\frac{1}{\Gamma(n)} \int_{0}^{\infty} \frac{x^{n-1}}{1+e^{x}} \, dx \\ &= \int_{0}^{\infty} \frac{1}{1+e^{x}} \frac{1}{x^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!} \, \frac{x^{n+1}}{n+1} \, dx \\ &= \int_{0}^{\infty} \frac{1}{1+e^{x}} \frac{1}{x^{2}} \left(e^{-x}+x-1 \right) \, dx \\ &= \lim_{s \to -1^{+}} \int_{0}^{\infty} \frac{x^{s-1}}{1+e^{x}} \left(e^{-x}+x-1 \right) \, dx \\ &= \lim_{s \to -1^{+}} \left[2^{-s} \, \Gamma(s) \left( \zeta(s) - \zeta \left(s, \frac{3}{2} \right)\right) + \Gamma(s+1) \eta(s+1 ) - \Gamma(s) \eta(s) \right] \\&= \lim_{s \to -1^{+}} \left[2^{-s} \, \Gamma(s) \left(\zeta(s) - \zeta \left(s, \frac{1}{2} \right) +2^{s}\right) + \Gamma(s+1) \eta(s+1 ) - \Gamma(s) \eta(s) \right] \tag{3} \\&= \lim_{s \to -1^{+}} \left[2^{-s} \, \Gamma(s) \left(\zeta(s) - \left(2^{s}-1\right)\zeta (s) +2^{s}\right) + \Gamma(s+1) \eta(s+1 ) - \Gamma(s) \eta(s) \right] \tag{4} \\ &= \lim_{s \to -1^{+}} \left[\left(2^{1-s}-1 \right) \Gamma(s) \zeta(s) + \Gamma(s) + \Gamma(s+1) \eta(s+1 ) - \Gamma(s) \eta(s)\right] \\&= \lim_{s \to -1^{+}} \left[ \Gamma(s) + \Gamma(s+1) \eta(s+1) -2\Gamma(s) \eta(s) \right] \tag{5}. \end{align}$$
La expansión de alrededor de $s=-1$, obtenemos
$$ \begin{align} &\lim_{s \to -1^{+}} \left[ \Gamma(s) + \Gamma(s+1) \eta(s+1) -2\Gamma(s) \eta(s) \right] \\ &= \small \lim_{s \to -1^{+}} \Big[\left(- \frac{1}{s+1} + \gamma-1 + \mathcal{O}(s+1) \right) + \left(\frac{1}{s+1} - \gamma + \mathcal{O}(s+1) \right) \Big(\frac{1}{2} +\eta'(0)(s+1) \\ &+ \small \mathcal{O}\left( (s+1)^{2} \right) \Big) - \small 2 \left(- \frac{1}{s+1} + \gamma-1 + \mathcal{O}(s+1) \right) \left(\frac{1}{4} + \eta'(-1)(s+1) + \mathcal{O}\left((s+1)^{2} \right) \right) \Big] \\ &= \lim_{s \to -1^{+}} \left[\eta'(0) + 2 \eta'(-1) - \frac{1}{2} + \mathcal{O}\left((s+1) \right) \right] \\&= \frac{1}{2} \, \ln \left(\frac{\pi}{2} \right) +2 \big( 4 \ln(2) \zeta(-1) -3 \zeta'(-1) \big) -\frac{1}{2} \tag{6} \\&= \frac{1}{2} \, \ln \left(\frac{\pi}{2} \right) +2 \left(-\frac{1}{3} \, \ln(2) -3 \left(\frac{1}{12} - \ln(A) \right) \right) - \frac{1}{2} \tag{7} \\&= \ln \left(\frac{\sqrt{\pi} \, A^{6}}{ 2^{7/6} e} \right) . \end{align}$$
$(3)$ $\zeta(s,a) = \zeta(s,a+1) + a^{-s}$
$(4)$ http://mathworld.wolfram.com/HurwitzZetaFunction.html (11)
$(5)$ $\eta(s) = (1-2^{1-s}) \zeta(s)$
$(6)$ http://mathworld.wolfram.com/DirichletEtaFunction.html (11)
$(7)$ https://en.wikipedia.org/wiki/Glaisher%E2%80%93Kinkelin_constant
Expandir $\Gamma(s+1)$ en una de la serie de Laurent alrededor de $s=-1$, la utilización de la identidad de la $\Gamma(s+1) = \frac{\Gamma(s+2)}{s+1}$.