$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{I \equiv \int_{0}^{\infty}x^{2}\expo{-x^{2}}{\rm fer}\pars{x}\ln\pars{x}
\,\dd x}$. Vamos
$\ds{{\cal I}\pars{\mu}
\equiv \int_{0}^{\infty}x^{\mu}\expo{-x^{2}}{\rm fer}\pars{x}\,\dd x}$ tal que $\ds{I = \lim_{\mu \2}\totald{{\cal I}\pars{\mu}}{\mu}}$
Desde
$\ds{{\rm fer}\pars{x}
\stackrel{{\rm def.}}{=}{2 \\raíz{\pi}}\int_{0}^{x}\expo{-y^{2}}\,\dd y}$:
\begin{align}
{\cal I}\pars{\mu}&=\int_{0}^{\infty}x^{\mu}\expo{-x^{2}}
{2 \\raíz{\pi}}\int_{0}^{\infty}\Theta\pars{x - y}\expo{-y^{2}}\,\dd y\,\dd x
\\[3 mm]&=
{2 \\raíz{\pi}}\int_{0}^{\pi/2}\dd\theta\,\cos^{\mu}\pars{\theta}
\Theta\pars{\cos\pars{\theta} - \sin\pars{\theta}}
\overbrace{\int_{0}^{\infty}\dd r\,r^{\mu + 1}\expo{-r^{2}}}
^{\Gamma\pars{1 + \mu/2}/2}
\\[3 mm]&={1 \over \raíz{\pi}}\,\Gamma\pars{1 + {\mu \over 2}}
\int_{0}^{\pi/4}\dd\theta\,\cos^{\mu}\pars{\theta}
\end{align}
\begin{align}
I&=\lim_{\mu \2}\totald{{\cal I}\pars{\mu}}{\mu}=
{1 \over 2\raíz{\pi}}\,\overbrace{\Psi\pars{2}}^{\ds{1 - \gamma}}\
\overbrace{\int_{0}^{\pi/4}\dd\theta\,\cos^{2}\pars{\theta}}^{\ds{\pars{\pi + 2}/8}}
\\[3 mm]&+
{1 \over \raíz{\pi}}\,\overbrace{\Gamma\pars{2}}^{\ds{1}}
\overbrace{%
\int_{0}^{\pi/4}\dd\theta\,\cos^{2}\pars{\theta}\ln\pars{\cos\pars{\theta}}}
^{\ds{\llaves{4G + \pi - 2\bracks{1 + \ln\pars{2}} - \pi\ln\pars{4}}/16}}
\end{align}
$\Gamma\pars{z}$ y $\Psi\pars{z}$ son $\it Gamma$ y $\it Digamma$ funciones, respectivamente. $\gamma$ y $G$ son $\es de Euler-Mascheroni$ catalán y constantes, respectivamente.
\begin{align}
&\color{#0000ff}{\large\int_{0}^{\infty}x^{2}\expo{-x^{2}}{\rm fer}\pars{x}\ln\pars{x}\,\dd x}
\\[3 mm]&=
\color{#0000ff}{\large{\pars{\pi + 2}\pars{1 - \gamma} + 4G + \pi - 2\bracks{1 + \ln\pars{2}} - \pi\ln\pars{4}\más de 16\raíz{\pi}}} \approx 0.0436462
\end{align}