$$\int \frac{dx}{\tan x + \cot x + \csc x + \sec x}$$ $$\tan x + \cot x + \csc x + \sec x=\frac{\sin x + 1}{\cos x} +\frac{\cos x + 1}{\sin x} $$ $$= \frac{\sin x +\cos x +1}{\sin x \cos x}$$ $$t= \tan {\frac{x}{2}}$$ On solving , $$\frac{1}{\tan x + \cot x + \csc x + \sec x}=\frac{t(1- t)}{1+ t^2}$$ $$\implies \int \frac{\tan {\frac{x}{2}}(1-\tan {\frac{x}{2}})}{1+\tan^2 {\frac{x}{2}}}{dx}$$
Creo que he hecho las cosas más difíciles. ¿Cómo puedo seguir adelante? ¿Hay alguna sustitución mejor para él?