$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert #1 \right\vert}%
\newcommand{\yy}{\Longleftrightarrow}$
$\ds{\fermi\pars{x} = \frac{1}{1 + x + x^3 + x^4} = {1 \over \pars{1 + x^{3}}\pars{1 + x}}\,,\quad \fermi^{\pars{2013}}\pars{0}:\ ?}$
\begin{align}
\fermi\pars{x}
&=
\sum_{\ell = 0}^{\infty}\pars{-1}^{3\ell}x^{3\ell}
\sum_{\ell' = 0}^{\infty}\pars{-1}^{\ell'}x^{\ell'}
=
\sum_{\ell = 0}^{\infty}\sum_{\ell' = 0}^{\infty}\pars{-1}^{\ell + \ell'}
\sum_{n = 0}^{\infty}x^{n}\delta_{n,3\ell + \ell'}
\\[3mm]&=
\sum_{n = 0}^{\infty}x^{n}\sum_{\ell = 0}^{\infty}\pars{-1}^{\ell}
\sum_{\ell' = 0}^{\infty}
\pars{-1}^{\ell'}\delta_{\ell', n - 3\ell}
=
\sum_{n = 0}^{\infty}x^{n}\bracks{\sum_{\ell = 0}^{\infty}
\pars{-1}^{\ell}\pars{-1}^{n - 3\ell}}_{n - 3\ell \geq 0}
\\[3mm]&=
\sum_{n = 0}^{\infty}{\fermi^{\pars{n}}\pars{0} \over n!}\,x^{n}
\quad\mbox{where}\quad
\fermi^{\pars{n}}\pars{0}
=
\pars{-1}^{n}\,n!\!\!\!\!\!\!\!\sum_{\ell = 0 \atop{\vphantom{\LARGE A}n - 3\ell\ \geq\ 0}}^{\infty}1
\end{align}
\begin{align}
\fermi^{\pars{2013}}\pars{0}
&=
\pars{-1}^{2013}\,2013!\!\!\!\!\!
\sum_{\ell = 0 \atop {\vphantom{\LARGE A}2013 - 3\ell\ \geq\ 0}}^{\infty}
\!\!\!\!\!\!\!\!\!\!\!1
=
-\pars{2013!}\sum_{\ell = 0}^{671}1
\end{align}
$$
\color{#0000ff}{\large\fermi^{\pars{2013}}\pars{0} = -672 \times \pars{2013!}}
$$