Dejemos que $a$ , $b$ , $c$ y $d$ sean números no negativos tales que $a+b+c+d=1$ . Demuestra que: $$\sqrt{a+b+c^2}+\sqrt{b+c+d^2}+\sqrt{c+d+a^2}+\sqrt{d+a+b^2}\geq3.$$ Probé con C-S, Holder y más, pero sin éxito.
Respuestas
¿Demasiados anuncios?( Para esta difícil pregunta que aún no ha recibido respuesta utilizaré el método de los multiplicadores de Lagrange ).
Dejemos que $F$ se define por $$F(x,y,z,w)=\sqrt{x+y+z^2}+\sqrt{y+z+w^2}+\sqrt{z+w+x^2}+\sqrt{w+x+y^2}$$ Utilizando los multiplicadores de Lagrange podemos encontrar el mínimo de $F$ con la restricción $$x+y+z+w=1$$ Tenemos la ecuación $$\nabla F(x,y,z,w)=\lambda\nabla(x+y+z+w)\qquad (1)$$ donde $\nabla$ es el conocido operador diferencial nabla. Poner para abreviar $$\begin{cases}D_1=\sqrt{z+w+x^2}\\D_2=\sqrt{w+x+y^2}\\D_3=\sqrt{x+y+z^2}\\D_4=\sqrt{y+z+w^2}\end{cases}$$
Desde $(1)$ tenemos $$\begin{cases}\dfrac{1}{2D_3}+\dfrac{1}{2D_2}+\dfrac{2x}{2D_1}=\lambda\\\dfrac{1}{2D_3}+\dfrac{1}{2D_4}+\dfrac{2y}{2D_2}=\lambda\\\dfrac{1}{2D_4}+\dfrac{1}{2D_1}+\dfrac{2z}{2D_3}=\lambda\\\dfrac{1}{2D_1}+\dfrac{1}{2D_2}+\dfrac{2w}{2D_4}=\lambda\end{cases}\qquad (2)$$ El sistema $(2)$ se satisface claramente con $x=y=z=w$ que da los valores $\dfrac 14$ para cada una de las coordenadas y $\dfrac 53$ para el multiplicador de Lagrange $\lambda$ .
De ello se desprende $D_1=D_2=D_3=D_4=\dfrac 34$ y el mínimo requerido es de hecho igual a $4\cdot\dfrac 34=3$ .
Ver rigurosamente que $x=y=z=w=\dfrac 14$ da un mínimo para $F$ tenemos que comprobar que la matriz hessiana limitada de la función auxiliar $h(x,y,z,w)=F(x,y,z,w)-\lambda(x+y+z+w)$ definido por (hemos puesto $-1$ en lugar de las primeras derivadas parciales de $x+y+z+w$ ) $$H=\begin{pmatrix}0&-1&-1&-1&-1\\-1&\dfrac{\partial^2 h}{\partial x^2}&\dfrac{\partial^2 h}{\partial x\partial y}&\dfrac{\partial^2 h}{\partial x\partial z}&\dfrac{\partial^2 h}{\partial x\partial w}\\-1&\dfrac{\partial^2 h}{\partial x\partial y}&\dfrac{\partial^2 h}{\partial y^2}&\dfrac{\partial^2 h}{\partial y\partial z}&\dfrac{\partial^2 h}{\partial y\partial w}\\-1&\dfrac{\partial^2 h}{\partial y^2}&\dfrac{\partial^2 h}{\partial y\partial z}&\dfrac{\partial^2 h}{\partial z^2}&\dfrac{\partial^2 h}{\partial \partial w}\\-1&\dfrac{\partial^2 h}{\partial x\partial w}&\dfrac{\partial^2 h}{\partial y\partial w}&\dfrac{\partial^2 h}{\partial z\partial w}&\dfrac{\partial^2 h}{ \partial w^2}\end{pmatrix}$$ es tal que para los valores $x=y=z=w=\dfrac 14$ todos los determinantes de las submatrices de la diagonal de orden $3$ o mayor que $3$ son positivos. Esto es fácil pero algo tedioso por lo que no hago tal comprobación y simplemente veo que no corresponde a un máximo porque, por ejemplo, cerca de $(0.25,0.25,0.25,0.25)$ uno tiene $$F(0.251,0.252,0.248,0.249)\approx3.000003252\gt3$$ y para otros dos ejemplos $$F\left(\dfrac 12,\dfrac13,\dfrac17,\dfrac{1}{42}\right)\approx3.056773\gt3\\ F\left(\dfrac {5}{12},\dfrac13,\dfrac17,\dfrac{1}{84}\right)\approx3.023735\gt3$$
Una solución informática que utiliza la Vía Búfalo
Tras la homogeneización, basta con demostrar que, para todo $a, b, c, d \ge 0$ , $$\sum_{\mathrm{cyc}} \sqrt{(a + b)(a+b+c+d) + c^2} \ge 3(a+b+c+d).$$ Denote \begin{align} &X = (a + b)(a+b+c+d) + c^2,\ Y = (b+c)(a+b+c+d) + d^2, \\ &Z = (c+d)(a+b+c+d) + a^2,\ W = (d+a)(a+b+c+d) + b^2. \end{align} Tenemos que demostrar que $\sqrt{X} + \sqrt{Y} + \sqrt{Z} + \sqrt{W} \ge 3(a+b+c+d)$ .
WLOG, asume $d = \min(a, b, c, d)$ . Nos dividimos en cuatro casos:
-
$a\ge b \ge c \ge d$ o $a\ge c \ge b \ge d$ o $c\ge a\ge b \ge d$ : Por GM-HM, tenemos $\sqrt{X} + \sqrt{W} = \sqrt{X + W + 2\sqrt{XW}}\ge \sqrt{X + W + \frac{4XW}{X+W}}$ y $\sqrt{Y} + \sqrt{Z} \ge \sqrt{Y + Z + \frac{4YZ}{Y+Z}}$ .
Basta con demostrar que $$\sqrt{X + W + \frac{4XW}{X+W}} + \sqrt{Y + Z + \frac{4YZ}{Y+Z}} \ge 3(a+b+c+d).$$ Elevando al cuadrado ambos lados, basta con demostrar que \begin{align} &2\sqrt{X + W + \frac{4XW}{X+W}} \sqrt{Y + Z + \frac{4YZ}{Y+Z}}\\ \ge\ & 9(a+b+c+d)^2 - X - W - \frac{4XW}{X+W} - Y - Z - \frac{4YZ}{Y+Z}. \end{align} Elevando al cuadrado ambos lados, basta con demostrar que \begin{align} &4\left(X + W + \frac{4XW}{X+W}\right)\left(Y + Z + \frac{4YZ}{Y+Z}\right)\\ \ge \ & \left(9(a+b+c+d)^2 - X - W - \frac{4XW}{X+W} - Y - Z - \frac{4YZ}{Y+Z}\right)^2. \end{align} La Vía del Búfalo funciona. -
$b\ge c \ge a \ge d$ : Por GM-HM, tenemos $\sqrt{X} + \sqrt{Y} \ge \sqrt{X + Y + \frac{4XY}{X+Y}}$ y $\sqrt{Z} + \sqrt{W} \ge \sqrt{Z + W + \frac{4ZW}{Z+W}}$ .
Basta con demostrar que $$\sqrt{X + Y + \frac{4XY}{X+Y}} + \sqrt{Z + W + \frac{4ZW}{Z+W}} \ge 3(a+b+c+d).$$ Elevando al cuadrado ambos lados, basta con demostrar que \begin{align} &2\sqrt{X + Y + \frac{4XY}{X+Y}} \sqrt{Z + W + \frac{4ZW}{Z+W}}\\ \ge\ & 9(a+b+c+d)^2 - X - Y - \frac{4XY}{X+Y} - Z - W - \frac{4ZW}{Z+W}. \end{align} Elevando al cuadrado ambos lados, basta con demostrar que \begin{align} &4\left(X + Y + \frac{4XY}{X+Y}\right)\left(Z + W + \frac{4ZW}{Z+W}\right)\\ \ge\ & \left(9(a+b+c+d)^2 - X - Y - \frac{4XY}{X+Y} - Z - W - \frac{4ZW}{Z+W}\right)^2. \end{align} La Vía del Búfalo funciona.
- $b \ge a \ge c \ge d$ : Por GM-HM, tenemos \begin{align} \sqrt{X} + \sqrt{Y} + \sqrt{W} &= \sqrt{X + Y + W + 2\sqrt{XY} + 2\sqrt{YW} + 2\sqrt{WX}}\\ &\ge \sqrt{X + Y + W + \frac{4XY}{X+Y} + \frac{4YW}{Y+W} + \frac{4WX}{W+X}}. \end{align}
Basta con demostrar que $$\sqrt{X + Y + W + \frac{4XY}{X+Y} + \frac{4YW}{Y+W} + \frac{4WX}{W+X}} + \sqrt{Z} \ge 3(a+b+c+d).$$ Elevando al cuadrado ambos lados, basta con demostrar que \begin{align} &2\sqrt{X + Y + W + \frac{4XY}{X+Y} + \frac{4YW}{Y+W} + \frac{4WX}{W+X}} \sqrt{Z}\\ \ge\ & 9(a+b+c+d)^2 - X - Y - W - \frac{4XY}{X+Y} - \frac{4YW}{Y+W} - \frac{4WX}{W+X} - Z. \end{align} Elevando al cuadrado ambos lados, basta con demostrar que \begin{align} &4\left(X + Y + W + \frac{4XY}{X+Y} + \frac{4YW}{Y+W} + \frac{4WX}{W+X}\right)Z\\ \ge\ & \left(9(a+b+c+d)^2 - X - Y - W - \frac{4XY}{X+Y} - \frac{4YW}{Y+W} - \frac{4WX}{W+X} - Z\right)^2. \end{align} La Vía del Búfalo funciona.
- $c \ge b \ge a \ge d$ : Por GM-HM, tenemos \begin{align} \sqrt{X} + \sqrt{Y} + \sqrt{Z} &= \sqrt{X + Y + Z + 2\sqrt{XY} + 2\sqrt{YZ} + 2\sqrt{ZX}}\\ &\ge \sqrt{X + Y + Z + \frac{4XY}{X+Y} + \frac{4YZ}{Y+Z} + \frac{4ZX}{Z+X}}. \end{align} Basta con demostrar que $$\sqrt{X + Y + Z + \frac{4XY}{X+Y} + \frac{4YZ}{Y+Z} + \frac{4ZX}{Z+X}} + \sqrt{W} \ge 3(a+b+c+d).$$ Elevando al cuadrado ambos lados, basta con demostrar que \begin{align} &2\sqrt{X + Y + Z + \frac{4XY}{X+Y} + \frac{4YZ}{Y+Z} + \frac{4ZX}{Z+X}}\sqrt{W}\\ \ge\ & 9(a+b+c+d)^2 - X - Y - Z - \frac{4XY}{X+Y} - \frac{4YZ}{Y+Z} - \frac{4ZX}{Z+X} - W. \end{align} Elevando al cuadrado ambos lados, basta con demostrar que \begin{align} &4\left(X + Y + Z + \frac{4XY}{X+Y} + \frac{4YZ}{Y+Z} + \frac{4ZX}{Z+X}\right)W\\ \ge\ & \left(9(a+b+c+d)^2 - X - Y - Z - \frac{4XY}{X+Y} - \frac{4YZ}{Y+Z} - \frac{4ZX}{Z+X} - W\right)^2. \end{align} La Vía del Búfalo funciona.
Hemos terminado.