7 votos

Límite de $x_n^3/n^2$ al $x_{n+1}=x_n+ 1/\sqrt {x_n}$ $x_0 \gt 0$

Deje $(x_n)_{n \ge 0}$ una secuencia de números reales con a $x_0 \gt 0$ y $x_{n+1}=x_n+ \frac {1}{\sqrt {x_n}}$.

Comprobar la existencia y encontrar $$L=\lim_{n \rightarrow \infty} \frac {x_n^3} {n^2}$$


Debido a $x_n$ es creciente, no es $\lim_{n \rightarrow \infty} {x_n}=l$ y no puede ser finito, de lo contrario, $l=l + \frac 1 {\sqrt {l}}$ imposible) por lo tanto, $L$ es indeterminada de $\frac {\infty}{\infty}$ formulario.

7voto

Virtuoz Puntos 510

El uso de Stolz teorema se puede conseguir $$ L = \lim_{n\to \infty} \frac{x_n^3}{n^2} = \lim_{n\to \infty}\frac{x_{n+1}^3-x_n^3}{2n+1} = \lim_{n\to \infty} \frac{3x_n^{3/2} + 3 + \frac{1}{x_n^{3/2}}}{2n+1} = \lim_{n\to \infty} \frac{3x_n^{3/2}}{2n+1} $$ Observe que $$ \frac{3x_n^{3/2}}{2n+1} \sim \frac{3x_n^{3/2}}{2n} $$ Es por eso que tenemos $$ L = \frac{3}{2}\sqrt{L} $$ y $L=0$ o $L=9/4$ o $L=\infty$ o el límite no existe. Vamos a demostrar que en el caso de $L=0$ es imposible. Por inducción probaremos $x_n^3 \ge n^2$. La base de la inducción es obvio. La inducción paso $$ x_{n+1}^3 = x_n^3 + 3x_n^{3/2} + 3 + \frac{1}{x_n^{3/2}} \ge n^2 + 3n + 3 \ge (n+1)^2 $$ Para el caso de $L=0$ es imposible. Del mismo modo se puede demostrar que $L\neq \infty$. Por lo $L = 9/4$ si alguien va a probar que existe. Actualmente no sé si es que existe para cualquier $x_0$ o no.

1voto

Vincenzo Oliva Puntos 3277

Este fue mi primer intento de evitar Stolz-Cesàro, sólo por diversión. El segundo error.


El límite existe y es finito, debido a $\dfrac{x_n^3}{n^2}$ está disminuyendo (y obviamente positivo). De hecho, para$n\ge1$,\begin{align}\frac{x_{n+1}^3}{(n+1)^2}&< \frac{x_n^3}{n^2} \\ \left(1+x_n^{-3/2}\right)^3&< 1+\frac2n+\frac1{n^2} \\ 3x_n^{-3/2}+3x_n^{-3}+x_n^{-9/2}&<\frac2n+\frac1{n^2},\end {align}y después de la reorganización y el uso de Cardano-Tartaglia fórmula (por supuesto yo explotados Wolfram Alpha), llegamos a la $$x_n^{3/2}>\frac{n^2}{2n+1}+\frac{a_n}{\sqrt[3]{2}(2n+1)}+\frac{\sqrt[3]{2}n^2(n+1)^2}{a_n(2n+1)},\tag{$\star$}$$where $a_n=\sqrt[3]{2n^6+6n^5+7n^4+4n^3+n^2+\sqrt{4n^{10}+20n^9+41n^8+44n^7+26n^6+8n^5+n^4}}.$ We need to strictly bound $a_n$ from above and below in order to strengthen $(\star)$ and prove the resulting inequality by induction. First of all, the square root inside the cube root, let's call it $b_n$, satisfies $$\require{color} 1+\frac5{2n}<\sqrt{1+\frac5n+\frac{10}{n^2}}<\frac{b_n}{2n^5}<\sqrt{1+\frac5n+\frac{30}{n^2}}<1+\frac5{2n}+\frac{\color\red{12}}{n^2} $$ hence $$\require{color} \begin{align}\sqrt[3]{2n^6+8n^5+12n^4+4n^3+n^2}&< \ a_n<\sqrt[3]{2n^6+8n^5+12n^4+28n^3+n^2} \\ \sqrt[3]{1+\frac4n+\frac6{n^2}+\frac2{n^3}}&<\frac{a_n}{\sqrt[3]{2}n^2}<\sqrt[3]{1+\frac4n+\frac6{n^2}+\frac{15}{n^3}}\\ 1+\frac4{3n}+\frac{\color\red{1/56}}{n^2} &<\frac{a_n}{\sqrt[3]{2}n^2}<1+\frac4{3n}+\frac{\color\red{2/9}}{n^2}, \end{align}$$ where the red coefficients can be found by setting, for positive $A a, B, C$ respectively, $$1+\frac5n+\frac{30}{n^2}<\left(1+\frac5{2n}+\frac{A}{n^2}\right)^2,$$ $$1+\frac4n+\frac6{n^2}+\frac2{n^3}>\left(1+\frac4{3n}+\frac{B}{n^2}\right)^3 $$ and $$1+\frac4n+\frac6{n^2}+\frac{15}{n^3}<\left(1+\frac4{3n}+\frac{C}{n^2}\right)^3;$$ due to the direction of the inequalities and the positiveness of all the terms, $A=12$ and $C=2/9$ are easy, as it's enough to equate the resulting coefficients of the $n^{-2}$ terms. As for $B$, looking at the $n^{-2}$ terms is not sufficient but does tell us $B<2/9,$ therefore, the inequality, which once rearranged and simplified is $$\frac23-3B>\frac{8B+10/27}{n}+\frac{B^2+\frac{16}{3}B}{n^2}+\frac{\frac{4}{3}B^2}{n^3}+\frac{ B^3}{n^4},$$ is weaker than $69B^2+441B-8<0,$ i.e., $B$ $\require{color} \color\rojo{<\dfrac1{56}<\dfrac{16}{885}}$$\require{color} \color\black{<\dfrac{16}{441+\sqrt{196689}}}.$

A continuación, la siguiente desigualdad es más que $(\star)$: \begin{align}x_n^{3/2}(2n+1)>n^2+n^2\left(1+\frac4{3n}+\frac2{9n^2}\right)+(n+1)^2\left(1+\frac4{3n}+\frac1{56n^2}\right)^{-1};\end{align} del mismo modo como en el anterior, uno puede encontrar $$(n+1)^2\left(1+\frac4{3n}+\frac1{56n^2}\right)^{-1}<n^2+\frac23n+\frac{1}{10}, $$so after rearrangement and some last trivial estimates, we conclude that $(\star)$ follows from $ x_n^{3/2}>\dfrac32n+1,$ or equivalently, $x_n^3>\dfrac94n^2+3n+1.$ As announced, we'll prove this by induction: firstly,\begin{align} \require{color}x_1^{3}=\left(x_0+\frac1{\sqrt{x_0}}\right)^{3}\color\red{\ge}\frac{27}{4}&>\frac{25}4,\end{align} $\requieren{color}\color\rojo{\text{debido a $f(x)=x+x^{-1/2}$ tiene un mínimo absoluto, que es $3\cdot2^{-2/3}$}}$;

por último, el paso inductivo es\begin{align}x_{k+1}^3=x_k^3+3x_k^{3/2}+3+x_k^{-3/2}&> \frac94k^2+3k+1+\frac92k+3+3 \\ &=\frac94k^2+\frac{15}2k+7 \\ &>\frac94k^2+\frac{15}2k+\frac{25}4=\frac94(k+1)^2+3(k+1)+1.\end{align} Tenga en cuenta que $(\star)$ implica $L\ge9/4$.

Por lo $x_n^3=L \ n^2(1+o(1))$, de donde $x_n^{3/2}= \sqrt{L} \ n +u_n$ $x_n=L^{1/3}n^{2/3}+v_n,$ $u_n=o(n), v_n=o(n^{2/3}).$

La proposición. $v_{n+1}-v_n=o(n^{-1/3})$.

Prueba. Suponga que existe una constante $c>0$ tal que, para todo lo suficientemente grande $n$, $n^{1/3}\left(v_{n+1}-v_n\right)>c$. La desigualdad puede escribirse como \begin{align} n^{1/3}\left(x_{n+1}-x_n-L^{1/3}\left[(n+1)^{2/3}-n^{2/3}\right]\right)&>c \\ \frac{n^{1/3}}{\sqrt{x_n}}-L^{1/3}n\left[\left(1+\frac1n\right)^{2/3}-1\right] &> c,\end{align} y desde el LHS converge a $L^{-1/6}-\frac{2}{3}L^{1/3},$ debemos tener $L^{-1/6}-\frac{2}{3}L^{1/3}\ge c,$ lo que equivale a otro cúbicos desigualdad y da$$\require{color}L\le\left(\frac12\left(\sqrt[3]{c^3+3\sqrt{2c^3+9}+9}+\dfrac{c^2}{\sqrt[3]{c^3+3\sqrt{2c^3+9}+9}}\right)-c\right)^3\color\red{<((3/2)^{2/3})^3}=\frac94,$$ $\requieren{color}\color\rojo{\text{por el decreasingness de que la función de $\mathbb{R^+}$}}$, contradicting $(\star).$ We're done.$\qquad \ \ \ \ \ \ \ \ \ \ \ \ $ $\cuadrado$

Ahora, tenemos $$\dfrac{x_{n+1}}{x_n}=1+x_n^{-3/2},$$ therefore, \begin{align}1=\lim_{n\to\infty} x_n^{3/2}\log\left(\frac{x_{n+1}}{x_n}\right)&=\lim_{n\to\infty}\sqrt{L}\ n\log\left(\frac{L^{1/3}(n+1)^{2/3}+v_{n+1}}{L^{1/3}n^{2/3}+v_n}\right) \\ &=\lim_{n\to\infty}\sqrt{L}\ n\left(\frac{L^{1/3}(n+1)^{2/3}+v_{n+1}}{L^{1/3}n^{2/3}+v_n}-1\right) \\ &=\lim_{n\to\infty}\sqrt{L}\ n\frac{L^{1/3}\left[(n+1)^{2/3}-n^{2/3}\right]+v_{n+1}-v_n}{L^{1/3}n^{2/3}+v_n}\\&=\lim_{n\to\infty}\sqrt{L}\ n\left[\left(1+\frac1n\right)^{2/3}-1\right]+\sqrt{L}\ n\frac{v_{n+1}-v_n}{L^{1/3}n^{2/3}}\\ &= \frac23 \sqrt{L}+\lim_{n\to\infty}L^{1/6}n^{1/3}\left(v_{n+1}-v_n\right).\end{align}By the proposition above, the last limit is $0$, hence we conclude $L=9/4.$

1voto

clark Puntos 5754

Vamos a utilizar Stolz teorema. Muchas veces antes de aplicar este teorema es una buena idea hacer que el denominador lineal.

Lo hacemos mediante la observación podemos calcular el $\sqrt L= \lim _n \frac{x_n^{3/2}}{n}$ lugar.

\begin{align*} \lim _n \frac{x_n^{3/2}}{n} &=^{\text{ST}} \lim _n x_{n+1}^{3/2}- x_n^{3/2} \\ &= \lim _n \frac{x_{n+1}^{3}- x_n^{3}}{ x_{n+1}^{3/2}+ x_n^{3/2}}\\ &= \lim _n \frac{3 x_n^{3/2}}{ x_{n+1}^{3/2}+ x_n^{3/2}}\text{, see Vortuoz's answer}\\ &= \lim _n \frac{3 x_n^{3/2}}{ ( x_n +\frac{1}{\sqrt{x_n}} )^{3/2}+ x_n^{3/2}} \\ &= \lim _n \frac{3 }{ ( 1 +\frac{1}{\sqrt{x_n^3}} )^{3/2}+ 1} \\ &=\frac{3}{2} \end{align*} En la segunda a la última línea utilizamos ese $\lim _n x_n=\infty$.

Por lo tanto, $$L=\frac{9}{4}.$$

0voto

psychotik Puntos 171

Apenas para la referencia, podemos demostrar que $(x_n)$ tiene las siguientes asintótica de expansión: existe una constante $C$, dependiendo únicamente de la $x_0$, de tal manera que

$$ x_n^{3/2} = \frac{3}{2}n + \frac{1}{4}\log n + C + \mathcal{O}\left( \frac{\log n}{n} \right) \tag{1} $$

donde el implícita obligado para $\mathcal{O}$ posiblemente depende de $x_0$. Aquí están algunas explicaciones:

  1. Continuum analógica del problema $y'(t) = y(t)^{-1/2}$ tiene la solución $y(t)^{3/2} = \frac{3}{2}t + \text{const}$. Esto sugiere que la $x_n^{3/2} \approx \frac{3}{2}n$.

  2. A partir de la observación anterior, nos "linealizar" $x_n$ considerando $y_n := x_n^{3/2}$. Esta nueva secuencia satisface la siguiente relación de recurrencia: $$ y_{n+1} = y_n \left( 1 + \frac{1}{y_n} \right)^{3/2} = y_n + \frac{3}{2} + \frac{3}{8y_n} + \mathcal{O}(y_n^{-2}). $$ Como en @clark's respuesta, este de inmediato los rendimientos de la asymptotics $y_n \sim \frac{3}{2}n$. Por otra parte, este tipo de relación de recurrencia es bien conocida. Ver mi blog, por ejemplo.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X