$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\dsc}[1]{\displaystyle{\color{#c00000}{#1}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align}&\color{#66f}{\large% \int_{0}^{\infty}\sech^{2}\pars{x^{2}}\,\dd x} =\int_{x\ =\ 0}^{x\ \to\ \infty}{\dd\tanh\pars{x^{2}} \over 2x} =\half\int_{0}^{\infty}{\tanh\pars{x^{2}} \over x^{2}}\,\dd x \\[5mm]&=4\sum_{n\ =\ 0}^{\infty}\ \overbrace{% \int_{0}^{\infty}{\dd x \over 4x^{4} + \bracks{\pars{2n + 1}\pi}^{2}}} ^{\ds{\color{#c00000}{1 \over 4\root{\pi}\pars{2n + 1}^{3/2}}}}\ =\ {1 \over \root{\pi}}\sum_{n\ =\ 0}^{\infty}{1 \over \pars{2n + 1}^{3/2}} \\[5mm]&={1 \over \root{\pi}}\bracks{% \sum_{n\ =\ 1}^{\infty}{1 \over n^{3/2}}- \sum_{n\ =\ 1}^{\infty}{1 \over \pars{2n}^{3/2}}} ={1 \over \root{\pi}}\pars{% \sum_{n\ =\ 1}^{\infty}{1 \over n^{3/2}}- 2^{-3/2}\sum_{n\ =\ 1}^{\infty}{1 \over n^{3/2}}} \\[5mm]&={1 - 2^{-3/2} \over \root{\pi}}\sum_{n\ =\ 1}^{\infty}{1 \over n^{3/2}} =\color{#66f}{\large{1 - 2^{-3/2} \over \root{\pi}}\,\zeta\pars{3 \over 2}} \approx {\tt 0.9528} \end{align}
Usamos la identidad conocida: $$ {\tanh\pars{z} \over z} =8\sum_{n\ =\ 0}^{\infty}{1 \over 4z^{2} + \bracks{\pars{2n + 1}\pi}^{2}} $$ y el $\ds{\color{#c00000}{\mbox{red result}}}$ se encontró con una de mis respuestas anteriores .