$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \int_{0}^{\infty}{\sin^{4}\pars{x} \over x^{2}}\,\dd x & = {1 \over 2}\int_{-\infty}^{\infty}{\sin^{4}\pars{x} \over x^{2}}\,\dd x = {1 \over 2}\lim_{N \to \infty}\int_{-N\pi}^{N\pi}{\sin^{4}\pars{x} \over x^{2}}\,\dd x \\[5mm] & = {1 \over 2}\lim_{N \to \infty}\sum_{k = -N}^{N - 1}\int_{k\pi}^{k\pi + \pi}{\sin^{4}\pars{x} \over x^{2}}\,\dd x = {1 \over 2}\lim_{N \to \infty}\sum_{k = -N}^{N - 1}\int_{0}^{\pi}{\sin^{4}\pars{x} \over \pars{x + k\pi}^{2}}\,\dd x \\[5mm] & = {1 \over 2}\int_{0}^{\pi}\sin^{4}\pars{x}\csc^{2}\pars{x}\,\dd x = {1 \over 2}\int_{0}^{\pi}{1 - \cos\pars{2x} \over 2}\,\dd x = \bbx{\pi \over 4} \end{align}
2 votos
Sugerencia Utiliza el Teorema de Plancherel.
2 votos
En cuanto a la integral $\int_0^{\infty} \frac{\sin ax}{x} dx$ , vea este método particularmente agradable: math.stackexchange.com/a/5257/155629 .
0 votos
Esta función no es integrable, creo que te refieres a buscar su valor principal, es decir