Comience con la expansión del producto infinito de $\sin x$ ,
$$\sin x = x \prod_{n=1}^\infty \left(1 - \frac{x^2}{n^2\pi^2}\right)$$
Obtenemos
$$\prod_{n=2}^\infty \left(1 - \frac{\alpha^2}{n^2}\right) = \frac{\sin(\alpha\pi)}{\alpha\pi(1-\alpha^2)}$$
En particular, $$\begin{align} \prod_{n=2}^\infty \left(1 - \frac{1}{n^2}\right) &= \lim_{\alpha\to 1}\frac{\sin(\alpha\pi)}{\alpha\pi(1-\alpha^2)} = \lim_{a\to1} \frac{\pi\cos(\pi\alpha)}{\pi\alpha(-2\alpha)} = \frac{1}{2}\\ \prod_{n=2}^\infty \left(1 + \frac{1}{n^2}\right) &=\frac{\sin(i\pi)}{i\pi(1-i^2)} = \frac{\sinh\pi}{2\pi}\\ \prod_{n=2}^\infty \left(1 \mp \frac{i}{n^2}\right) &= \frac{\sin(\frac{1\pm i}{\sqrt{2}}\pi)}{\frac{1\pm i}{\sqrt{2}}\pi(1 \mp i)} = \frac{ \sin(\frac{\pi}{\sqrt{2}})\cosh(\frac{\pi}{\sqrt{2}}) \pm i \cos(\frac{\pi}{\sqrt{2}})\sinh(\frac{\pi}{\sqrt{2}}) }{\frac{1\pm i}{\sqrt{2}}\pi(1 \mp i)} \end{align}$$
A partir de esto, obtenemos
$$\begin{align} \prod_{n=2}^\infty\frac{n^4-1}{n^4+1} &= \frac{\displaystyle \prod_{n=2}^\infty \left(1 - \frac{1}{n^2}\right) \prod_{n=2}^\infty \left(1 + \frac{1}{n^2}\right) }{\displaystyle \prod_{n=2}^\infty \left(1 - \frac{i}{n^2}\right) \prod_{n=2}^\infty \left(1 + \frac{i}{n^2}\right) }\\ &= \frac{\displaystyle \frac{\sinh\pi}{4\pi} }{\displaystyle\left( \frac{\sin(\frac{\pi}{\sqrt{2}})^2\cosh(\frac{\pi}{\sqrt{2}})^2 +\cos(\frac{\pi}{\sqrt{2}})^2\sinh(\frac{\pi}{\sqrt{2}})^2}{2\pi^2}\right) }\\ &= \frac{\pi\sinh\pi}{\cosh(\sqrt{2}\pi) - \cos(\sqrt{2}\pi)}\\ \\ &\approx 0.84805404935290039212965018340500770584798748\ldots \end{align}$$