Me topé con la interesante de la integral definida \begin{equation} \int\limits_0^1 \frac{\sin^{-1}(x)}{x} dx = \frac{\pi}{2}\ln2 \end{equation}
Aquí está mi prueba de este resultado.
Deje $u=\sin^{-1}(x)$ integrar por partes, \begin{align} \int \frac{\sin^{-1}(x)}{x} dx &= \int u \cot(u) du \\ &= u \ln\sin(u) - \int \ln\sin(u) du \tag{1} \label{eq:20161030-1} \end{align}
\begin{align} \int \ln\sin(u) du &= \int \ln\left(\frac{\mathrm{e}^{iu} - \mathrm{e}^{-iu}}{i2} \right) du \\ &= \int \ln\left(\mathrm{e}^{iu} - \mathrm{e}^{-iu} \right) du \,- \int \ln(i2) du \\ &= \int \ln\left(1 - \mathrm{e}^{-i2u} \right) du + \int \ln\mathrm{e}^{iu} du \,-\, u\ln(i2) \\ &= \int \ln\left(1 - \mathrm{e}^{-i2u} \right) du + \frac{i}{2}u^{2} -u\ln2 \,-\, ui\frac{\pi}{2} \tag{2} \label{eq:20161030-2} \end{align}
Para evaluar la integral anterior, vamos a $y=\mathrm{e}^{-i2u}$ \begin{equation} \int \ln\left(1 - \mathrm{e}^{-i2u} \right) du = \frac{i}{2} \int \frac{\ln(1-y)}{y} dy = -\frac{i}{2} \operatorname{Li}_{2}(y) = -\frac{i}{2} \operatorname{Li}_{2}\mathrm{e}^{-i2u} \tag{3} \label{eq:20161030-3} \end{equation}
Ahora sustituimos la ecuación \eqref{eq:20161030-3} en la ecuación \eqref{eq:20161030-2}, a continuación, sustituir el resultado en la ecuación \eqref{eq:20161030-1}, cambiar las variables de vuelta a (x), y aplicar los límites, \begin{align} \int\limits_{0}^{1} \frac{\sin^{-1}(x)}{x} dx &= \sin^{-1}(x)\ln(x) + \sin^{-1}(x)\left(\ln2 + i\frac{\pi}{2}\right) \\ &- \frac{i}{2}[\sin^{-1}(x)]^{2} + \frac{i}{2} \operatorname{Li}_{2}\mathrm{e}^{-i2\sin^{-1}(x)} \Big|_0^1 \\ &= \frac{\pi}{2}\ln2 \end{align}
Yo estaría interesado en ver otras soluciones.