Tengo que demostrar que: $$ \forall s>1,\qquad\int_0^\infty \sum_{k=1}^{\infty}\frac{1}{(k^s+1)^x+k^s}dx=\zeta(s). $$
Me ¿cómo puedo encontrar la forma cerrada para esta suma?
$$ \sum_{k=1}^{\infty}\frac{1}{(k^s+1)^x+k^s} $$
Tengo que demostrar que: $$ \forall s>1,\qquad\int_0^\infty \sum_{k=1}^{\infty}\frac{1}{(k^s+1)^x+k^s}dx=\zeta(s). $$
Me ¿cómo puedo encontrar la forma cerrada para esta suma?
$$ \sum_{k=1}^{\infty}\frac{1}{(k^s+1)^x+k^s} $$
Sólo para completar Ron Gordon excelente respuesta, observe que: $$ I(a,b)=\int_{0}^{+\infty}\frac{dx}{e^{x\log a}+b} = \frac{1}{\log a}\int_{0}^{+\infty}\frac{dz}{e^z+b}=\frac{1}{\log a}\int_{1}^{+\infty}\frac{dt}{t(t+b)}$$ y: $$ \int_{1}^{+\infty}\frac{dt}{t(t+b)}=\int_{0}^{1}\frac{du}{1+bu}=\frac{1}{b}\int_{0}^{b}\frac{dv}{1+v}=\frac{\log(1+b)}{b}$$ a través de las sustituciones $x=\frac{z}{\log a}$, $z=\log t$, $t=\frac{1}{u}$ y $u=\frac{v}{b}$. Que conduce a: $$\int_{0}^{+\infty}\sum_{k\geq 1}\frac{dx}{(k^s+1)^x+k^s}=\sum_{k\geq 1}\frac{\log(1+k^s)}{k^s \log(1+k^s)} = \zeta(s)$$ como quería.
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.