Es posible demostrar que $$ \int_{0}^{4}\frac{\ln x}{\sqrt{4x-x^2}}\,dx=2\int_{0}^{\pi/2}\ln(2\sin u)\,du $$ Sí, es cierto, $$ \int_{0}^{4}\frac{\ln x}{\sqrt{4x-x^2}}\,dx= \int_{0}^{4}\frac{\ln x}{2\sqrt{1-(\frac{x-2}{2})^2}}\,dx \overset{t=\frac{x-2}{2}}{=}\int_{-1}^{1}\frac{\ln(2t+2)}{\sqrt{1-t^2}}\,dt\\ =\int_{-1}^{0}\frac{\ln(2t+2)}{\sqrt{1-t^2}}\,dt+\int_{0}^{1}\frac{\ln(2t+2)}{\sqrt{1-t^2}}\,dt\\ \overset{u=-t}{=}\int_{1}^{0}\frac{\ln(2-2u)}{\sqrt{1-u^2}}\cdot-du+\int_{0}^{1}\frac{\ln(2t+2)}{\sqrt{1-t^2}}\,dt\\ \int_{0}^{1}\frac{\ln(2-2t)}{\sqrt{1-t^2}}\,dt +\int_{0}^{1}\frac{\ln(2t+2)}{\sqrt{1-t^2}}\,dt\\ $$ Ahora, $$ \int_{0}^{1}\frac{\ln(2t+2)}{\sqrt{1-t^2}}\,dt\overset{t=\cos u}{=} \int_{\pi/2}^{0}\frac{\ln(2\cos u+2)}{\sin u}\cdot-\sin u du =\int_{0}^{\pi/2}\ln(2\cos u+2)\,du\\ =\int_{0}^{\pi/2}\ln(4\cos^2\frac{u}{2})\,du =2\int_{0}^{\pi/2}\ln(2\cos\frac{u}{2})\,du $$ de manera similar $$ \int_{0}^{1}\frac{\ln(2-2t)}{\sqrt{1-t^2}}\,dt =2\int_{0}^{\pi/2}\ln(2\sin\frac{u}{2})\,du $$ así que $$ \int_{0}^{4}\frac{\ln x}{\sqrt{4x-x^2}}\,dx =2\int_{0}^{\pi/2}\ln(2\sin u)\,du $$
0 votos
Tal vez un cambio de variables que complete un cuadrado bajo la raíz podría funcionar.
0 votos
Esta respuesta ofrece la prueba más corta