$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\int_{0}^{\infty}\arctan\pars{2ax \over x^{2} + c^{2}}\sin\pars{bx}\,\dd x ={\pi \over \verts{b}} \expo{-\verts{b}\root{\vphantom{\Large A}a^{2} + c^{2}}}\sinh\pars{ab}: \ {\large ?}}$
\begin {align}& \color {#c00000}{ \int_ {0}^{ \infty } \arctan\pars {2ax \over x^{2} + c^{2}} \sin\pars {bx}, \dd x} = \half\ , \sgn\pars {ab} \Im\int_ {- \infty }^{ \infty } \arctan\pars {2 \verts {a}x \over x^{2} + c^{2}} \expo { \ic\verts {b}x}, \dd x \\ [3mm]&= \half\ , \sgn\pars {ab}, \Im\int_ {- \infty }^{ \infty }{ \ic \over 2}\, \ln\pars {% 1 - 2 \verts {a}x \ic / \bracks {x^{2} + c^{2}} \over 1 + 2 \verts {a}x \ic / \bracks {x^{2} + c^{2}} \expo { \ic\verts {b}x}, \dd x \\ [3mm]&={1 \over 4}\, \sgn\pars {ab}, \Re\int_ {- \infty }^{ \infty } \ln\pars {% x^{2}- 2 \verts {a} \ic x + c^{2} \over x^{2} + 2 \verts {a} \ic x + c^{2}} \ \underbrace { \expo { \ic\verts {b}x}, \dd x} _{ \ds { \dd\pars { \expo { \ic\verts {b}x} \over \ic\verts {b}}}} \end {align} $$\begin{array}{|c|}\hline \\ \quad\mbox{Here, we used the identity}\quad \arctan\pars{x} = {\ic \over 2}\,\ln\pars{1 - x\ic \over 1 + x\ic}\quad \\ \\ \hline \end{array} $$
Integración por partes: \begin {align}& \color {#c00000}{% \int_ {0}^{ \infty } \arctan\pars {2ax \over x^{2} + c^{2}} \sin\pars {bx}, \dd x} \\ [3mm]&=-\\N-\N-\N-\N-1 \over 4}\, \sgn\pars {ab}, \Re\int_ {- \infty }^{ \infty } \pars {{2x - 2 \verts {a} \ic \over x^{2} - 2 \verts {a} \ic x + c^{2}}- {2x + 2 \verts {a} \ic \over x^{2} + 2 \verts {a} \ic x + c^{2}}} \expo { \ic\verts {b}x},{b} \dd x \over \ic\verts {b}} \\ [3mm]&=-\\N-\N-\N-\N-\N-ES. \sgn\pars {a} \over 2b}\, \Im\int_ {- \infty }^{ \infty } \pars {{x - \verts {a} \ic \over x^{2} - 2 \verts {a} \ic x + c^{2}}- {x + \verts {a} \ic\over x^{2} + 2 \verts {a} \ic x + c^{2}}} \expo { \ic\verts {b}x}, \dd x \end {align}
\begin {align} & \mbox {Ceros de} \quad x^{2} - 2 \verts {a} \ic x + c^{2} =0 \quad\mbox {están dadas por} \quad \left\lbrace\begin {array}{rcl} \phantom {-}x_{1} & = & \pars { \verts {a} + \root {a^{2} + c^{2}} \ic \\ [2mm] \phantom {-}x_{2} & = & \pars { \verts {a} - \root {a^{2} + c^{2}} \ic \end {array} \right. \\ [3mm]& \mbox {Ceros de} \quad x^{2} + 2 \verts {a} \ic x + c^{2} =0 \quad\mbox {están dadas por} \quad \left\lbrace\begin {array}{rcl} -x_{1} & = & \pars {- \verts {a} - \root {a^{2} + c^{2}} \ic \\ [2mm] -x_{2} & = & \pars {- \verts {a} + \root {a^{2} + c^{2}} \ic \end {array} \right. \end {align} Tenga en cuenta que $\ds{\Im\pars{x_{1}} > 0}$ y $\ds{\Im\pars{x_{2}} < 0}$ .
Por lo tanto, \begin {align} & \color {#c00000}{% \int_ {0}^{ \infty } \arctan\pars {2ax \over x^{2} + c^{2}} \sin\pars {bx}, \dd x} \\ [3mm]&=-\\N-\N-\N-\N-\N-ES. \sgn\pars {a} \over 2b}\, \Im\pars {% 2 \pi\ic\ ,{ \pars {x_{1} - \verts {a} \ic } \expo { \ic\verts {b}x_{1}} \over 2x_{1} - 2 \verts {a} \ic } - 2 \pi\ic\ ,{ \pars {-x_{2} + \verts {a} \ic } \expo {- \ic\verts {b}x_{2}} \over -2x_{2} + 2 \verts {a} \ic }} \\ [3mm]&=-\\N-\N-\N-\N-\N-ES. \pi\sgn\pars {a} \over 2b} \braces {% \exp\pars {- \verts {b} \bracks { \verts {a} + \root {a^{2} + c^{2}}}} - \exp\pars { \verts {b} \bracks { \verts {a} - \root {a^{2} + c^{2}}}}} \\ [3mm]&=-\\N-\N-\N-\N-\N-ES. \pi\sgn\pars {a} \over 2b} \bracks {% \expo {- \verts {b} \root { \vphantom { \Large A}a^{2} + c^{2}} \pars { \expo {- \verts {ab}} - \expo { \verts {ab}}}} \\ [3mm]&={ \pi\sgn\pars {a} \over b} \expo {- \verts {b} \root { \vphantom { \Large A}a^{2} + c^{2}} \sinh\pars { \verts {ab}} ={ \pi \over \verts {b}} \expo {- \verts {b} \root { \vphantom { \Large A}a^{2} + c^{2}} \sinh\pars {ab} \end {align}
\begin {align} & \color {#66f}{ \large % \int_ {0}^{ \infty } \arctan\pars {2ax \over x^{2} + c^{2}} \sin\pars {bx}, \dd x ={ \pi \over \verts {b}} \expo {- \verts {b} \root { \vphantom { \Large A}a^{2} + c^{2}} \sinh\pars {ab}} \end {align}