$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\down}{\downarrow}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}
&\color{#00f}{\large\int_{-\pi}^{\pi}\verts{\sum^{\infty}_{n=1}{1 \over 2^{n}}\,\expo{inx}}^{2}\,\dd x}
=\int_{-\pi}^{\pi}\verts{\expo{\ic x}/2 \over 1 - \expo{\ic x}/2}^{2}\,\dd x
=\int_{-\pi}^{\pi}{\dd x \over \bracks{2 - \cos\pars{x}}^{2} + \sin^{2}\pars{x}}
\\[3mm]&=2\int_{0}^{\pi}{\dd x \over 5 - 4\cos\pars{x}}
=2\int_{0}^{\infty}{1 \over 5 - 4\pars{1 - t^{2}}/\pars{1 + t^{2}}}\,{2\,\dd t \over 1 + t^{2}}
=4\int_{0}^{\infty}{1 \over 9t^{2} + 1}\,\dd t
\\[3mm]&={4 \over 3}\int_{0}^{\infty}{1 \over t^{2} + 1}\,\dd t=
{4 \over 3}\lim_{t \to \infty}\arctan\pars{t} = {4 \over 3}\,{\pi \over 2}
=\color{#00f}{\large{2 \over 3}\,\pi}
\end{align}