Cómo probar
$~~ \forall n\in\mathbb{N}^+$,
\begin{align}I_n=\int_0^1(1+x+x^2+x^3+\cdot\cdot\cdot+x^{n-1})^2 (1+4x+7x^2+\cdot\cdot\cdot+(3n-2)x^{n-1})~dx=n^3.\end{align}
Yo:
Definir $\displaystyle S(n)=\sum_{k=0}^{n-1}x^k=1+x+x^2+x^3+\cdot\cdot\cdot+x^{n-1}=\frac{x^n-1}{x-1}$. A continuación, \begin{align}\frac{d}{dx}S(n)=S'(n)=1+2x+3x^2+\cdot\cdot\cdot(n-1)x^{n-2}=\sum_{k=0}^{n-1}kx^{k-1}.\end{align}
Por lo tanto, \begin{align}I_n=\int_0^1 S^2(n)\left(3S'(n+1)-2S(n)\right)~dx\end{align} \begin{align}=3\int_0^1 S^2(n)S'(n+1)~dx-2\int_0^1 S^3(n)~dx\end{align} \begin{align}=3\int_0^1 S^2(n)(S'(n)+nx^{n-1})~dx-2\int_0^1 S^3(n)~dx\end{align} \begin{align}=3\int_0^1 S^2(n)~d(S(n))+3\int_0^1 S^2(n)(nx^{n-1})~dx-2\int_0^1 S^3(n)~dx\end{align} \begin{align}=n^3-1+\int_0^1 S^2(n)(3nx^{n-1}-2S(n))~dx\end{align} \begin{align}=n^3-1+\int_0^1 \left(\frac{x^n-1}{x-1}\right)^2\left(3nx^{n-1}-2\cdot\frac{x^n-1}{x-1}\right)~dx\end{align} Así que la pregunta se convierte en:
Demostrar \begin{align}I'=\int_0^1 \left(\frac{x^n-1}{x-1}\right)^2\left(3nx^{n-1}-2\cdot\frac{x^n-1}{x-1}\right)~dx=1.\end{align}
\begin{align}I'=\int_0^1 \frac{3nx^{n-1}(x^n-1)^2}{(x-1)^2}-\frac{2(x^n-1)^3}{(x-1)^3}~dx\end{align}
\begin{align}=\int_0^1 \frac{(x-1)^2\left(\frac d {dx} (x^n-1)^3\right)-2(x^n-1)^3(x-1)}{(x-1)^4}~dx\end{align}
\begin{align}=\int_0^1 \frac d {dx} \left(\frac{(x^n-1)^3}{(x-1)^2}\right)~dx\end{align}
\begin{align}=\lim_{x \to 1} \frac{(x^n-1)^3}{(x-1)^2}-\frac{(0^n-1)^3}{(0-1)^2}\end{align}
\begin{align}\therefore I'=1.\end{align}
\begin{align}\therefore I_n=n^3.\end{align}
No DEBE haber otras MEJORES maneras de evaluar $I_n$.
Alguien podría darme alguna solución mejor? Gracias.