Diferenciando ambos lados de la ecuación funcional$$ \zeta(s) = \frac{1}{\pi}(2 \pi)^{s} \sin \left( \frac{\pi s}{s} \right) \Gamma(1-s) \zeta(1-s),$$ we can evaluate $\zeta'(2)$ in terms of $\zeta'(-1)$ and then use the fact that a common way to define the Glaisher-Kinkelin constant is $\log A = \frac{1}{12} - \zeta'(-1)$.
La diferenciación de ambos lados de la funcional de la ecuación, obtenemos
$$\begin{align} \zeta'(s) &= \frac{1}{\pi} \log(2 \pi)(2 \pi)^{s} \sin \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s) + \frac{1}{2} (2 \pi)^{s} \cos \left(\frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s)\\ &- \frac{1}{\pi}(2 \pi)^{s} \sin \left(\frac{\pi s}{2} \right)\Gamma^{'}(1-s) \zeta(1-s) - \frac{1}{\pi}(2 \pi)^{s} \sin \left(\frac{\pi s}{2} \right)\Gamma(1-s) \zeta'(1-s). \end{align}$$
A continuación, dejando $s =-1$, obtenemos $$\zeta'(-1) = -\frac{1}{2\pi^{2}}\log(2 \pi)\zeta(2) + 0 + \frac{1}{2 \pi^{2}}(1- \gamma)\ \zeta(2) + \frac{1}{2 \pi^{2}}\zeta'(2)$$ since $\Gamma'(2) = \Gamma(2) \psi(2) = \psi(2) = \psi(1) + 1 = -\gamma +1. \etiqueta{1}$
La solución para $\zeta'(2)$,
$$ \begin{align} \zeta'(2) &= 2 \pi^{2} \zeta'(-1) + \zeta(2)\left(\log(2 \pi)+ \gamma -1\right) \\ &= 2 \pi^{2} \left(\frac{1}{12} - \log (A) \right) + \zeta(2)\left(\log(2 \pi)+ \gamma -1\right) \\ &= \zeta(2) - 12 \zeta(2) \log(A)+ \zeta(2) \left(\log(2 \pi)+ \gamma -1\right) \tag{2} \\ &= \zeta(2) \left(-12 \log(A) + \gamma + \log(2 \pi) \right). \end{align}$$
$(1)$ https://en.wikipedia.org/wiki/Digamma_function
$(2)$ Diferentes métodos para calcular los $\sum\limits_{k=1}^\infty \frac{1}{k^2}$
EDITAR:
Si desea mostrar que, de hecho,$$\zeta'(-1)= \frac{1}{12}- \lim_{m \to \infty} \left( \sum_{k=1}^{m} k \log k - \left(\frac{m^{2}}{2}+\frac{m}{2} + \frac{1}{12} \right) \log m + \frac{m^{2}}{4} \right) = \frac{1}{12}- \log(A),$$ you could differentiate the representation $$\zeta(s) = \lim_{m \to \infty} \left( \sum_{k=1}^{m} k^{-s} - \frac{m^{1-s}}{1-s} - \frac{m^{-s}}{2} + \frac{sm^{-s-1}}{12} \right) \ , \ \text{Re}(s) >-3. $$
Esta representación puede ser derivada aplicando la de Euler-Maclaurin fórmula a $\sum_{k=n}^{\infty} {k^{-s}}$.