Recordemos que, como $x \to 0$, por la expansión de Taylor, tenemos
$$
\begin{align}
e^x& =1+x+\mathcal{O}(x^2)\\
\ln (1+x)&=x-\frac {x^2}{2}+\mathcal{O}(x^3)
\end{align}
$$ giving, as $n \to \infty$,
$$
n\ln \left(1-\frac {2}{2n+4}\right)=n \left(-\frac {2}{2n+4}+\mathcal{S}(\frac {1}{n^2})\right)=-1+\mathcal{S}(\frac {1}{n})
$$ y
$$
\begin{align}
\frac{1}{n} \left(\frac{2n+2}{2n+4}\right)^n&=\frac{1}{n} \left(\frac{2n+4-2}{2n+4}\right)^n\\\\
&=\frac{1}{n} \left(1-\frac {2}{2n+4}\right)^n\\\\
&=\frac{1}{n}e^{n\ln (1-\frac {2}{2n+4})}\\\\
&=\frac{1}{n}e^{-1+\mathcal{O}(\frac {1}{n})}\\\\
&\sim \frac{e^{-1}}{n}
\end{align}
$$ por lo tanto inicial de la serie es divergente.