¿Cuáles son los principales argumentos contemporáneos a favor y en contra del realismo sobre la teoría de conjuntos?
Respuestas
¿Demasiados anuncios?Una dificultad aquí es que no está claro qué cuenta como "realismo" sobre la teoría de conjuntos.
Compare, para empezar, estos dos puntos de vista:
- Hay un Universo Verdadero de Conjuntos, allá en el cielo de Platón, y nuestro objetivo como matemáticos es explorar ese universo lo mejor que podamos. Y una afirmación como la Hipótesis del Continuum, por ejemplo, es simplemente cierta o falsa sobre ese Universo Único y Verdadero (el problema es que nuestros mejores intentos de resolver el asunto haciendo suposiciones que parezcan plausibles sobre ese universo no nos han dado una respuesta). Sin embargo, hay un hecho real sobre qué camino tomar con la Hipótesis del Continuum, o con cualquier otra pregunta coherente que podamos hacer sobre los conjuntos.
- Una teoría como la ZFC tiene muchos modelos, hay muchos universos teóricos de conjuntos diferentes (un "multiverso", si se quiere, no un Universo Verdadero Único). Estos universos teóricos de conjuntos diferentes son todos tan buenos como los demás -- y en algunos la CH es verdadera, y en otros no. Estos universos de conjuntos gobernados por ZFC son todos igualmente "reales" -- y luego hay otros mundos de conjuntos donde, por ejemplo, rige New Foundations (suponiendo que esa teoría sea consistente).
Ahora bien, ambos puntos de vista podrían denominarse especies de realismo. El primero puede haber sido el punto de vista de Gödel (y todavía hay algunos que piensan, sí, que hay un Hecho de la Cuestión sobre si la CH es verdadera, sólo que todavía no hemos encontrado una manera de establecer cuál). El segundo punto de vista es, en cierto modo, una forma más fuerte de realismo (en lugar de creer en un Universo Verdadero de conjuntos, cree en lotes de universos de conjuntos diferentes); pero en otros aspectos hace afirmaciones más débiles -- la CH carece de un valor de verdad determinado, sino que sólo es verdadera o falsa en relación con un modelo particular.
Pero en cualquier caso, el punto actual es que cuando uno se pregunta sobre argumentos a favor y en contra del realismo set-teórico, obviamente va a importar qué tipo de realismo o anti-realismo está en cuestión (y sólo hemos tocado dos variedades).
Una nota a pie de página. Mauro menciona algunas lecturas clave. El libro de Maddy probablemente no sea una lectura fácil para los no filósofos: pero para una explicación de lo que está en juego en ese libro -ella explora en particular una posición que llama Realismo Delgado, que es diferente de nuevo de las dos posiciones mencionadas anteriormente- se podría echar un vistazo a la reseña que escribí con Luca Incurvati, disponible aquí . Y yo añadiría que también valdría la pena echar un vistazo al comienzo del justamente admirado libro de Michael Potter La teoría de conjuntos y su filosofía
Puede ver :
Penélope Maddy, Defender los axiomas: Sobre los fundamentos filosóficos de la teoría de conjuntos (2013)
Richard Tieszen, Después de Godel: Platonismo y racionalismo en matemáticas y lógica (2011)
y algunos capítulos de :
George Boolos, Lógica, lógica y lógica (1998), principalmente el capítulo 8 : ¿Debemos creer en la teoría de conjuntos? (página 120-on).