29 votos

¿Por qué este patrón de "desagradable" integrales parar?

Tenemos (errata corregida),

$$\begin{aligned} \pi &=\int_{-\infty}^{\infty}\frac{(x-1)^2}{\color{blue}{(2x - 1)}^2 + (x^2 - x)^2}\,dx,\quad\text{(by Mark S.)}\\[1.8mm] \pi &=\int_{-\infty}^{\infty}\frac{(x+1)^2}{\color{blue}{(x + 1)}^2 + (x^2 + x)^2}\,dx\\[1.8mm] \pi &=\int_{-\infty}^{\infty}\frac{(x+1)^2}{\color{blue}{(x^2 - x - 1) }^2 + (x^2 + x)^2}\,dx\\[1.8mm] \color{red}\pi &=\int_{-\infty}^{\infty}\frac{(x+1)^2}{\color{blue}{(x^3 + 2x^2 - x - 1)}^2 + (x^2 + x)^2}\,dx\\[1.8mm] \pi &=\int_{-\infty}^{\infty}\frac{(x-1)^2}{\color{blue}{(x^3 - 3x^2 + 1)}^2 + (x^2 - x)^2}\,dx\\[1.8mm] ?? &=\int_{-\infty}^{\infty}\frac{(x\pm1)^2}{\color{blue}{(x^5 + 3x^4 - 3x^3 - 4x^2 + x + 1)}^2 + (x^2 \pm x)^2}\,dx \end{aligned}$$

donde los que están en azul son el mínimo polinomios de $x=\frac{1}{2\cos(2\pi/p)}$$p=1,3,5,7,9,11$.

Nota: La red pi, es la notoria uno en el post, Un desagradable integral de una función racional, $$\int_0^{\infty} \frac{x^8 - 4x^6 + 9x^4 - 5x^2 + 1}{x^{12} - 10 x^{10} + 37x^8 - 42x^6 + 26x^4 - 8x^2 + 1} \, dx = \frac{\pi}{2}$$ así como en este post después de la manipulación.

P1: ¿por Qué el "patrón" de la utilización de un mínimo de polinomios de trabajo y luego se detiene en $p=11$, y cómo podemos hacer es seguir ajustando los otros parámetros?


$\color{green}{Update:}$ Basada en una idea de un viejo post, el uso de la "negativa" en caso de $p=7$, su denominador es todavía un sextic con una solución Galois grupo y nos encontramos,

$$\int_{-\infty}^{\infty}\frac{(x\color{red}-1)^2}{\color{blue}{(x^3 + 2x^2 - x - 1)}^2 + (x^2 \color{red}- x)^2}\,dx=\pi\sqrt{\frac{u}{\color{green}{12833}}}$$

donde $u$ es una raíz de un monic nonic también con un solucionable grupo de Galois,

$$\pequeño -\color{color verde}{12833}^3*1782434241^2 - 41120374319577904376201744753 u - 354521093943488815427187669 u^2 - 550802363395052799639795 u^3 - 176617825075778391189 u^4 + 116970252692553921 u^5 - 20201478347596 u^6 + 1625465206 u^7 - 63997 u^8 + u^9=0$$

El denominador de $p=9$ también es solucionable. Sin embargo, para $p=11$, no lo es.

P2: Era el patrón que se interrumpe porque el denominador de $p=11$ no tiene una solución Galois grupo?

8voto

Steven Charlton Puntos 706

Respuesta parcial. Mathematica 11.0.1.0 (versión 64 bits de Windows) parece para evaluar simbólicamente $$ \int_{-\infty}^{\infty} \frac{(x - 1)^2}{(1 + x - 4 x^2 - 3 x^3 + 3 x^4 + x^5)^2 + (x^2 - x)^2} \, \mathrm{d}x =2\pi y $$ donde $ y $ es una raíz (el 5 de raíz en Mathematica del pedido), de \begin{align*} \small F(y)=55936138949897200689844509841956235222126377325 - 2082209926471466695895506312399091645554188710590 y + 49399208260228586110040380712822122163293326842296 y^2 - 904097593617672391563622547821611243428330356636656 y^3 + 14127632726315977701496334077804393041066245226028208 y^4 - 192534883415138070802102412843131348551007666040509024 y^5 + 2248032708977729589700543648210682328879792825038892288 y^6 - 22010013756272539692699272127690186099540607721493676800 y^7 + 177728824048935169179013735666882776433001119535910888192 y^8 - 1170270214760621202108304618484485542592211842152325435904 y^9 + 6226689208769791815298929222960276164825821302955689534464 y^{10} - 26437408929821178291367173439675032999610116594417230776320 y^{11} + 87275205150008062398776420803782617539547332212906935361536 y^{12} - 209632027731557385765045313738415590487122817707525011718144 y^{13} + 284829590179494874220555955086122649413365826411704845058048 y^{14} + 245738741392479529396402731465119601079938307163739661565952 y^{15} - 2744252632383133719563152613313766366008892259189754592296960 y^{16} + 9042239242455966498125021473251288480014205602523431668940800 y^{17} - 19642481348541153825949628077511851598796849639028033440972800 y^{18} + 31384454408136427453055038714389257858518560896664228069376000 y^{19} - 37847103175390150688294536889184184478935891337063789625344000 y^{20} + 34290036775233047407263179281808801381553538237009356390400000 y^{21} - 22732262960008031643227099738915285612779131750417374904320000 y^{22} + 10440433388762840105269721355193655567662001399784538112000000 y^{23} - 2974656530310569079556114222635017838466182586996359168000000 y^{24} + \color{blue}{831141777440}^5 y^{25}=0 \end{align*}

El discriminante $ d $ de el integrando del denominador

$$G(x)=(1 + x - 4 x^2 - 3 x^3 + 3 x^4 + x^5)^2 + (x^2 - x)^2$$

es $d=-2^5\times\color{blue}{831141777440}$. El discriminante de la $25$-deg $F(y)$ es divisible por $d^{65}$. Sin embargo, su término constante no es integralmente divisible por $ d $.

Por otra parte, $ y' = 831141777440 y $ es un entero algebraico. El discriminante del polinomio mínimo de a $ y' $ es divisible por $d^{246}$. El término constante es divisible por $ d^{10} $, pero el cociente no es un poder perfecto de un entero.

El caso positivo ++ pasa la primera prueba, pero también se produce un error en el segundo. El término constante es divisible por $ d^{990} $, pero el cociente no es un poder perfecto.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X