9 votos

Una pregunta sobre progresiones aritméticas y números primos

Me tomó número $3$ y observó:

$3$ es una progresión aritmética de longitud uno.

$3,5$ es una progresión aritmética de longitud dos.

$3,5,7$ es una progresión aritmética de longitud tres.

Luego me tomó número $5$ y observó:

$5$ es una progresión aritmética de longitud uno.

$5,7$ es una progresión aritmética de longitud dos.

$5,11,17$ es una progresión aritmética de longitud tres.

$5,11,17,23$ es una progresión aritmética de longitud cuatro.

$5,11,17,23,29$ es una progresión aritmética de duración de cinco años.

Así que seguramente sería agradable saber:

Es cierto que para cada número primo $p$ existe $p$ progresiones aritméticas, la primera de longitud, la segunda de longitud dos, ... , $p$-ésimo de la longitud de la $p$, de modo que cada una de esas progresiones aritméticas tiene número $p$ como su primer mandato.

Yo sé acerca de Green-Tao teorema, pero no sé que hace este puede seguir a partir de lo que la combinación de Green-Tao teorema con algunos probados o no probados los hechos responder a esta pregunta?

Está claro que con $p$ como punto de partida no podemos tener una progresión aritmética de números primos con $p+1$, debido a $(p+1)$-st plazo se $p+pd$, que está compuesto.

Si esta pregunta tiene su respuesta es afirmativa, entonces tendríamos que para cada natural $k$ tenemos un número infinito de progresiones aritméticas de números primos con $k$ términos, así que supongo que esto es muy duro, pero quisiera escuchar opiniones y sugerencias de cómo podría ser atacado.

6voto

Joffan Puntos 7855

Recopilación de mis resultados en conjunto, hay un $7$-longitud de la secuencia se encuentra por $7$:

$7,$ $157,$ $307,$ $457,$ $607,$ $757,$ $907$

Tenga en cuenta que, a partir de a $11$ (o mayor prime), para tener una secuencia de longitud $7$ o más es esencial que el paso es divisible por $7\#=210$, para evitar múltiplos de la menor de los números primos, y en general para las $p$-longitud de la secuencia de $p$, el paso tiene que ser divisible por el primorial de la anterior primer a $p$ (que podría ser escrito $(p-1)\#$, ya que sólo los números primos se multiplican todos modos).

Las mejores secuencias de la fecha para los primeros 20 números primos: $$\pequeño \begin{array}{c|cc} \text{Length} & & &\text{Longest sequence}\\ \hline 2 \;\checkmark & 2 & 3 & & & & & & & & \\ 3 \;\checkmark & 3 & 5 & 7 & & & & & & & \\ 5 \;\checkmark & 5 & 11 & 17 & 23 & 29 & & & & & \\ 7 \;\checkmark & 7 & 157 & 307 & 457 & 607 & 757 & 907 & & & \\ 10 & 11 & 224494631 & 448989251 & 673483871 & 897978491 & 1122473111 & 1346967731 & 1571462351 & 1795956971 & 2020451591 \\ 10 & 13 & 111739753 & 223479493 & 335219233 & 446958973 & 558698713 & 670438453 & 782178193 & 893917933 & 1005657673 \\ 9 & 17 & 6947 & 13877 & 20807 & 27737 & 34667 & 41597 & 48527 & 55457 & \\ 10 & 19 & 35707369 & 71414719 & 107122069 & 142829419 & 178536769 & 214244119 & 249951469 & 285658819 & 321366169 \\ 9 & 23 & 100613 & 201203 & 301793 & 402383 & 502973 & 603563 & 704153 & 804743 & \\ 9 & 29 & 8456519 & 16913009 & 25369499 & 33825989 & 42282479 & 50738969 & 59195459 & 67651949 & \\ 10 & 31 & 104816281 & 209632531 & 314448781 & 419265031 & 524081281 & 628897531 & 733713781 & 838530031 & 943346281 \\ 10 & 37 & 2040607 & 4081177 & 6121747 & 8162317 & 10202887 & 12243457 & 14284027 & 16324597 & 18365167 \\ 9 & 41 & 19489511 & 38978981 & 58468451 & 77957921 & 97447391 & 116936861 & 136426331 & 155915801 & \\ 9 & 43 & 52963 & 105883 & 158803 & 211723 & 264643 & 317563 & 370483 & 423403 & \\ 9 & 47 & 3025307 & 6050567 & 9075827 & 12101087 & 15126347 & 18151607 & 21176867 & 24202127 & \\ 9 & 53 & 15441983 & 30883913 & 46325843 & 61767773 & 77209703 & 92651633 & 108093563 & 123535493 & \\ 9 & 59 & 49267739 & 98535419 & 147803099 & 197070779 & 246338459 & 295606139 & 344873819 & 394141499 & \\ 9 & 61 & 27388681 & 54777301 & 82165921 & 109554541 & 136943161 & 164331781 & 191720401 & 219109021 & \\ 9 & 67 & 48175117 & 96350167 & 144525217 & 192700267 & 240875317 & 289050367 & 337225417 & 385400467 & \\ 9 & 71 & 13959401 & 27918731 & 41878061 & 55837391 & 69796721 & 83756051 & 97715381 & 111674711 & \\ \end{array} $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X