16 votos

¿Cuál es la fórmula para esta serie de $\pi$?

Estas fracciones continuas para $\pi$ fueron dados aquí,

$$\pequeño \pi = \cfrac{4} {1+\cfrac{1^2} {2+\cfrac{3^2} {2+\cfrac{5^2} {2+\ddots}}}} = \sum_{n=0}^\infty \frac{4(-1)^n}{2n+1} = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \cdots\tag1 $$

$$\pequeño \pi = 3 + \cfrac{1^2} {6+\cfrac{3^2} {6+\cfrac{5^2} {6+\ddots}}} = 3 - \sum_{n=1}^\infty \frac{(-1)^n} {n (n+1) (2n+1)} = 3 + \frac{1}{1\cdot 2\cdot 3} - \frac{1}{2\cdot 3\cdot 5} + \frac{1}{3\cdot 4\cdot 7} - \cdots\tag2 $$

$$\pequeño \pi = \cfrac{4} {1+\cfrac{1^2} {3+\cfrac{2^2} {5+\cfrac{3^2} {7+\ddots}}}} = 4 - 1 + \frac{1}{6} - \frac{1}{34} + \frac {16}{3145} - \frac{4}{4551} + \frac{1}{6601} - \frac{1}{38341} + \cdots\tag3$$

Por desgracia, el tercero no se incluyen de forma cerrada para la serie. (He probado el OEIS el uso de los denominadores, pero sin resultados.)

P. ¿Cuál es la fórmula serie de $(3)$?

10voto

user21783 Puntos 11

El tercero debe ser obtenida a partir de a$4.1.40$ en a&S p.68 uso de $z:=ix$ (a partir de Euler creo no estoy seguro) :

$$-2\,i\,\log\frac{1+ix}{1-ix} = \cfrac{4x} {1+\cfrac{(1x)^2} {3+\cfrac{(2x)^2} {5+\cfrac{(3x)^2} {7+\ddots}}}} $$ Salvo que la expansión de la función en $x=1$ es simplemente su expansión por $(1)$.

Algunos prolijo variantes :

$$\varphi(x):=\int_0^{\infty}\frac{e^{-t}}{x+t}dt= \cfrac{1} {x+1-\cfrac{1^2} {x+3-\cfrac{2^2} {x+5-\cfrac{3^2} {x+7-\ddots}}}}$$ $$\text{the previous one was better for large $x$...}$$ $$\int_0^{\infty}e^{-t}\left(1+\frac tn\right)^n\,dt=1+ \cfrac{n} {1+\cfrac{1(n-1)} {3+\cfrac{2(n-2)} {5+\cfrac{3(n-3)} {7+\ddots}}}}$$

$$\sum_{k=0}^\infty\frac 2{(x+2k+1)^2}= \cfrac{1} {x+\cfrac{1^4} {3x+\cfrac{2^4} {5x+\cfrac{3^4} {7x+\ddots}}}}$$ $$\text{and thus $\dfrac{\zeta(2)}2$ for $x=1$ (Stieltjes)}$$

$$\text{The last one was obtained after division by $n$ at the limit $n=0$ :}$$ $$\begin{align} \int_0^1\frac{t^{x-n}-t^{x+n}}{1-t^2}dx&=\sum_{k=0}^\infty\frac 1{x-n+2k+1}-\frac 1{x+n+2k+1}\\ &=\cfrac{n} {x+\cfrac{1^2(1^2-n^2)} {3x+\cfrac{2^2(2^2-n^2)} {5x+\cfrac{3^2(3^2-n^2)} {7x+\ddots}}}}\\ \end{align}$$

Su continuación en la fracción aparece también en una clara y reciente libro de Borwein, van der Poorten, Shallit, Zudilin "Neverending Fracciones: Una Introducción a las Fracciones continuas" al final de las páginas de $167-169$ reproducidos para su comodidad, aquí (con la esperanza de que no hay ningún problema con eso...) :

p167p168p169

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X