7 votos

3 Variable De La Ecuación De Diophantine

Encontrar todos los enteros soluciones a $$x^4 + y^4 + z^3 = 5$$ I don't know how to proceed, since it has a p-adic and real solution for all $p$. Creo que el único que es (2, 2, -3) y el trivial de los que vienen desde el este, pero no lo puedo confirmar.

3voto

Stephan Aßmus Puntos 16

Soluciones a $$ z^3 + 5 = k^4 + s^2 $$ razonablemente frecuentes

 September 27  

z: 3          n: 32       k: 2     sq: 4  sq_sq: 2  diff  0
z: 5          n: 130       k: 3     sq: 7  sq_sq: 2  diff  3
z: 15          n: 3380       k: 2     sq: 58  sq_sq: 7  diff  9
z: 20          n: 8005       k: 9     sq: 38  sq_sq: 6  diff  2
z: 68          n: 314437       k: 23     sq: 186  sq_sq: 13  diff  17
z: 83          n: 571792       k: 4     sq: 756  sq_sq: 27  diff  27
z: 93          n: 804362       k: 19     sq: 821  sq_sq: 28  diff  37
z: 101          n: 1030306       k: 3     sq: 1015  sq_sq: 31  diff  54
z: 168          n: 4741637       k: 31     sq: 1954  sq_sq: 44  diff  18
z: 405          n: 66430130       k: 73     sq: 6167  sq_sq: 78  diff  83
z: 431          n: 80062996       k: 94     sq: 1410  sq_sq: 37  diff  41
z: 488          n: 116214277       k: 103     sq: 1914  sq_sq: 43  diff  65
z: 684          n: 320013509       k: 25     sq: 17878  sq_sq: 133  diff  189
z: 765          n: 447697130       k: 103     sq: 18307  sq_sq: 135  diff  82
z: 848          n: 609800197       k: 9     sq: 24694  sq_sq: 157  diff  45
z: 1005          n: 1015075130       k: 79     sq: 31243  sq_sq: 176  diff  267
z: 1221          n: 1820316866       k: 11     sq: 42665  sq_sq: 206  diff  229
z: 1391          n: 2691419476       k: 126     sq: 49390  sq_sq: 222  diff  106
z: 1871          n: 6549699316       k: 130     sq: 79146  sq_sq: 281  diff  185
z: 2480          n: 15252992005       k: 247     sq: 107382  sq_sq: 327  diff  453
z: 2768          n: 21207928837       k: 247     sq: 132234  sq_sq: 363  diff  465
z: 2888          n: 24087491077       k: 39     sq: 155194  sq_sq: 393  diff  745
z: 3485          n: 42326109130       k: 409     sq: 119763  sq_sq: 346  diff  47
z: 4076          n: 67717750981       k: 103     sq: 260010  sq_sq: 509  diff  929
z: 5636          n: 179024699461       k: 625     sq: 162594  sq_sq: 403  diff  185
z: 5763          n: 191401729952       k: 466     sq: 379796  sq_sq: 616  diff  340
z: 5925          n: 208000828130       k: 509     sq: 375337  sq_sq: 612  diff  793
z: 7965          n: 505309357130       k: 691     sq: 526613  sq_sq: 725  diff  988
z: 12308          n: 1864500322117       k: 1167     sq: 98786  sq_sq: 314  diff  190
z: 14213          n: 2871159161602       k: 1269     sq: 527159  sq_sq: 726  diff  83
z: 14991          n: 3368928644276       k: 1318     sq: 592730  sq_sq: 769  diff  1369
z: 15615          n: 3807377733380       k: 1052     sq: 1607042  sq_sq: 1267  diff  1753
z: 17496          n: 5355700839941       k: 1423     sq: 1120430  sq_sq: 1058  diff  1066
z: 18063          n: 5893450576052       k: 686     sq: 2381594  sq_sq: 1543  diff  745
z: 19923          n: 7907955283472       k: 1292     sq: 2263076  sq_sq: 1504  diff  1060
z: 22901          n: 12010562298706       k: 571     sq: 3450255  sq_sq: 1857  diff  1806
z: 23445          n: 12886966846130       k: 1111     sq: 3370967  sq_sq: 1836  diff  71
z: 24693          n: 15056414740562       k: 667     sq: 3854671  sq_sq: 1963  diff  1302
z: 24995          n: 15615626874880       k: 464     sq: 3945792  sq_sq: 1986  diff  1596
z: 27663          n: 21168877523252       k: 1862     sq: 3024646  sq_sq: 1739  diff  525
z: 33180          n: 36528273432005       k: 1831     sq: 5028778  sq_sq: 2242  diff  2214
z: 35324          n: 44076756492229       k: 705     sq: 6620402  sq_sq: 2573  diff  73
z: 37388          n: 52263284795077       k: 2111     sq: 5692494  sq_sq: 2385  diff  4269
z: 38733          n: 58109000778842       k: 2203     sq: 5878381  sq_sq: 2424  diff  2605
z: 51293          n: 134950439050762       k: 2973     sq: 7538389  sq_sq: 2745  diff  3364
z: 53871          n: 156338201695316       k: 2602     sq: 10511890  sq_sq: 3242  diff  1326
z: 54344          n: 160492523139589       k: 2975     sq: 9064158  sq_sq: 3010  diff  4058
z: 61200          n: 229220928000005       k: 1367     sq: 15024278  sq_sq: 3876  diff  902
z: 61733          n: 235262196719842       k: 981     sq: 15308039  sq_sq: 3912  diff  4295
z: 63045          n: 250583197816130       k: 2803     sq: 13742407  sq_sq: 3707  diff  558
z: 68493          n: 321320597819162       k: 3911     sq: 9346411  sq_sq: 3057  diff  1162
z: 70995          n: 357835390324880       k: 4184     sq: 7168012  sq_sq: 2677  diff  1683
z: 80988          n: 531204838990277       k: 2887     sq: 21488054  sq_sq: 4635  diff  4829
z: 85020          n: 614558602008005       k: 3623     sq: 21030058  sq_sq: 4585  diff  7833
z: 86111          n: 638522048185636       k: 4820     sq: 9938694  sq_sq: 3152  diff  3590
z: 91551          n: 767342543357156       k: 4496     sq: 18940330  sq_sq: 4352  diff  426
z: 96200          n: 890277128000005       k: 3847     sq: 25908582  sq_sq: 5090  diff  482
jagy@phobeusjunior:
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
z: 100221     n: 1006644663093866     k: 2573     sq: 31029275  sq_sq: 5570  diff  4375
z: 100980     n: 1029689061192005     k: 3617     sq: 29300722  sq_sq: 5413  diff  153
z: 100995     n: 1030147992574880     k: 5014     sq: 19952908  sq_sq: 4466  diff  7752
z: 121725     n: 1803596357953130     k: 1423     sq: 42420467  sq_sq: 6513  diff  1298
z: 125973     n: 1999090319542322     k: 5843     sq: 28870511  sq_sq: 5373  diff  1382
z: 126060     n: 2003235041016005     k: 4993     sq: 37171598  sq_sq: 6096  diff  10382
z: 130131     n: 2203648395038096     k: 5644     sq: 34480780  sq_sq: 5872  diff  396
z: 140480     n: 2772320878592005     k: 4617     sq: 48144778  sq_sq: 6938  diff  8934
z: 148191     n: 3254359196531876     k: 340     sq: 57046874  sq_sq: 7552  diff  14170
z: 160163     n: 4108531157450752     k: 3712     sq: 62599296  sq_sq: 7911  diff  15375
z: 161988     n: 4250583285982277     k: 7991     sq: 13152346  sq_sq: 3626  diff  4470
z: 163661     n: 4383647270173786     k: 1013     sq: 66201165  sq_sq: 8136  diff  6669
z: 165375     n: 4522822787109380     k: 5828     sq: 58044482  sq_sq: 7618  diff  10558
z: 165900     n: 4566034179000005     k: 5183     sq: 62003122  sq_sq: 7874  diff  3246
z: 176028     n: 5454378397973957     k: 7847     sq: 40778026  sq_sq: 6385  diff  9801
z: 199440     n: 7932987984384005     k: 6647     sq: 77336182  sq_sq: 8794  diff  1746
z: 200405     n: 8048698481430130     k: 5871     sq: 82828807  sq_sq: 9101  diff  606
z: 217475     n: 10285561814046880     k: 662     sq: 101416812  sq_sq: 10070  diff  11912
z: 220035     n: 10653082808542880     k: 94     sq: 103213772  sq_sq: 10159  diff  8491
z: 253023     n: 16198694022523172     k: 8032     sq: 109712186  sq_sq: 10474  diff  7510
z: 255080     n: 16596985896512005     k: 11343     sq: 6530798  sq_sq: 2555  diff  2773
z: 257363     n: 17046622002731152     k: 10524     sq: 69137876  sq_sq: 8314  diff  15280
z: 267188     n: 19074398313188677     k: 5871     sq: 133739714  sq_sq: 11564  diff  13618
z: 272288     n: 20187637882191877     k: 11849     sq: 21813174  sq_sq: 4670  diff  4274
z: 290516     n: 24519418580108101     k: 3145     sq: 156274074  sq_sq: 12500  diff  24074
z: 293693     n: 25332659542683562     k: 7269     sq: 150135829  sq_sq: 12252  diff  24325
z: 313919     n: 30935191351930564     k: 5260     sq: 173694258  sq_sq: 13179  diff  8217
z: 317283     n: 31940404348304192     k: 7564     sq: 169313176  sq_sq: 13012  diff  1032

1voto

timdev Puntos 25910

Después de una cuidadosa investigación I se presentan algunos resultados que podrían ser útiles en la resolución final de este problema. Vamos a empezar con la ecuación original es decir, $$x^4+y^4+z^3=5$$ Es fácil ver que no hay solución de esta ecuación en la que el $x,y$ $z$ son todas positivas. En segundo lugar, si $(x,y,z)$ es una solución, así es $(-x,-y,z)$. A partir de estas observaciones podemos conseguir ese $z<0$. Vamos a reescribir la ecuación en términos de los valores positivos, es decir, $$x^4+y^4-z^3=5$$ donde $x,y$ $z$ son todas positivas. Esto es equivalente a $$x^4+y^4=5+z^3$$ A partir de esto, uno se $$x^4+y^4\equiv z^3\mod(5)$$ En primer lugar mostramos que $x\equiv 0\mod(5)$ $y\equiv 0\mod(5)$ fib $z\equiv 0\mod(5)$. Si $x\equiv 0\mod(5)$ $y\equiv 0\mod(5)$ $$x^4+y^4\equiv0\mod(5)\Rightarrow 5+z^3\equiv z^3\equiv0\mod(5)\Rightarrow z\equiv0\mod(5)$$ Ahora vamos a $z\equiv0\mod(5)$ $$5+z^3\equiv0\mod(5)\Rightarrow x^4+y^4\equiv0\mod(5)$$ Sin embargo, de cualquier $x\in\mathbb{Z}$ ha $x^4\equiv0\mod(5)$ o $x^4\equiv1\mod(5)$. Por lo tanto $$x^4+y^4\equiv0\mod(5)\Leftrightarrow x\equiv y\equiv0\mod(5)$$ Sin embargo, una inspección de nuestra ecuación modificada de los rendimientos que no podemos tener simultáneamente $x$ $y$ divisible por $5$ porque de lo contrario $z\equiv0\mod(5)$ y $$x^4+y^4\equiv0\mod(5^3)\Rightarrow 5+z^3\equiv0\mod(5^3)$$ que es imposible como $5+z^3\equiv 5\mod(5^3)$. Sabiendo que $x$ $y$ no puede ser simultáneamente divisible por $5$ $z$ no es divisible por $5$. La aplicación de Fermat poco teorema podemos reescribir la ecuación modificada como $$zx^4+zy^4\equiv1\mod(5)$$ Vamos a decir, sin pérdida de generalidad $y\equiv0\mod(5)$ $x^4\equiv1\mod(5)$ $$z\cdot 1+z\cdot 0\equiv1\mod(5)\Rightarrow z\equiv1\mod(5)$$

El otro exhaustiva caso serían $x^4\equiv1\mod(5)$$y^4\equiv1\mod(5)$, en cuyo caso $$z\cdot 1+z\cdot 1\equiv1\mod(5)\Rightarrow 2z\equiv1\mod(5)\Rightarrow z\equiv3\mod(5)$$ En este caso la inspección directa de $z=3$ rendimiento $x=\pm 2$$y=\pm 2$.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X