Tenemos $\displaystyle\cos^4x+\sin^4x=(\cos^2x+\sin^2x)^2-2\cos^2x\sin^2x=1-2\cos^2x\sin^2x$
$\displaystyle=\frac{2-\sin^22x}2=\frac{2(1+\tan^22x)-\tan^22x}{2\sec^22x}=\frac{\tan^22x+2}{2\sec^22x}$
$$\int\frac{dx}{\cos^4x+\sin^4x}=\int\frac{2\sec^22x}{\tan^22x+2}dx$$
Ajuste $\tan2x=u,$ % $ $$\int\frac{2\sec^22x}{\tan^22x+2}dx=\int\frac{du}{u^2+(\sqrt2)^2}=\frac1{\sqrt2}\arctan\left(\frac u{\sqrt2}\right)+K$
$$\implies \int\frac{dx}{\cos^4x+\sin^4x}=\frac1{\sqrt2}\arctan\left(\frac{\tan2x}{\sqrt2}\right)+K\ \ \ \ (1)$$
Ahora $\displaystyle\tan2x=0\iff 2x=n\pi\iff x=\frac{n\pi}2$ $n$ Dónde está cualquier número entero
Establecer que \int_0^ {2a} $$ f (x)dx = \begin{cases} 2\int_0^af(x)dx &\mbox{if } f(2a-x)=f(x) \\
0 & \mbox{if } f(2a-x)=-f(x) \end{casos} $$
Ajuste del $2a=2\pi\iff a=\pi$ y $\displaystyle f(x)=\cos^4x+\sin^4x$
$\displaystyle\cos(2\pi-x)=\cos x,\sin(2\pi-x)=-\sin x\implies f(2\pi-x)=f(x)$
$$\implies I=\int_0^{2\pi}\frac{dx}{\cos^4x+\sin^4x}=2\int_0^{\pi}\frac{dx}{\cos^4x+\sin^4x}$$
Otra vez ajuste $\displaystyle2a=\pi\iff a=\frac\pi2$
$\displaystyle\cos(\pi-x)=-\cos x,\sin(\pi-x)=+\sin x\implies f(\pi-x)=f(x)$
$$\implies I=2\int_0^{\pi}\frac{dx}{\cos^4x+\sin^4x}2=2\cdot2\int_0^{\dfrac\pi2}\frac{dx}{\cos^4x+\sin^4x}$$
Finalmente ajuste $\displaystyle2a=\frac\pi2\iff a=\frac\pi4$
$\displaystyle\implies\cos\left(\frac\pi2-x\right)=\sin x,\sin\left(\frac\pi2-x\right)=\cos x$
$\displaystyle\implies f(x)=f\left(\frac\pi2-x\right)$
$\displaystyle\implies I=4\cdot2\int_0^{\dfrac\pi4}\frac{dx}{\cos^4x+\sin^4x}$
De $\displaystyle(1),I=8\left[\frac1{\sqrt2}\arctan\left(\frac{\tan2x}{\sqrt2}\right)+K\right]_0^{\frac\pi4}=\frac8{\sqrt2}\left(\frac\pi2-0\right)$