7 votos

Un límite sin invocación de L'Hôpital.

El siguiente límite

$$\ell=\lim_{x \rightarrow 0} \frac{x \cos x - \sin x}{x^2}$$

es un buen candidato para la Regla de L'Hospital. Esto se dio en una escuela antes de L'Hospital de la Regla estaba cubierto. Me pregunto cómo podemos omitir la regla y el uso de límites básicos, tales como:

$$\lim_{x \rightarrow 0} \frac{\sin x}{x} \quad , \quad \lim_{x \rightarrow 0} \frac{\cos x -1}{x^2}$$

19voto

Vincenzo Oliva Puntos 3277

De la prueba geométrica de $\frac{\sin x}{x} \to 1$ $x\to0$ sabemos $\cos x<\frac{\sin x}{x} <1$ cerca de $0$. Desde $\frac{x\cos x -\sin x}{x^2} = \frac{\cos x -\frac{\sin x}{x}}{x}$, vemos que $$ 0=\lim_{x\to0}\frac{\cos x -1}{x} \le \ell \le \lim_{x\to0} \frac{\cos x-\cos x}{x}=0,$$so $\ell=0$.

18voto

Ishu Puntos 3654

Tenemos,

$$\lim_{x \to 0} \dfrac{x\cos x - \sin x}{x^2} = \lim_{x \to 0} \dfrac{\cos x -1}{x} + \lim_{x \to 0}\dfrac{x - \sin x}{x^2} $$

$$ = -2\lim_{x \to 0} \dfrac{\sin^2 \left(\frac{x}{2}\right)}{x} + \lim_{x \to 0}\dfrac{x - \sin x}{x^2} $$

El primer límite es cero debido a que $\displaystyle \lim_{x \to 0} \dfrac{\sin x}{x} = 1$, y,

$$ 0 \leq \lim_{x \to 0}\dfrac{x - \sin x}{x^2} \leq \lim_{x \to 0}\dfrac{\tan x - \sin x}{x^2}$$

Pero,

$$\lim_{x \to 0}\dfrac{\tan x - \sin x}{x^2} = \lim_{x \to 0} \ \left( \sin x \times \dfrac{1-\cos x}{x^2 \cos x} \right) = \lim_{x \to 0} \dfrac{1 - \cos x}{x} = 0$$

Por lo tanto, por el Teorema del encaje,

$$\lim_{x \to 0} \dfrac{x\cos x - \sin x}{x^2} =0$$

4voto

Anthony Shaw Puntos 858

La función de $\frac{x\cos(x)-\sin(x)}{x^2}$ es impar, por lo que sólo tenemos que ver el $0\lt x\lt\frac\pi2$. Como se muestra en esta respuesta, $0\le\sin(x)\le x\le\tan(x)$. Además, $x\cos(x)-\sin(x)=(x-\tan(x))\cos(x)\le0$. Así tenemos $$ \begin{align} 0 &\ge\color{#C00000}{\frac{x\cos(x)-\sin(x)}{x^2}}\\ &\ge\frac{\sin(x)(\cos(x)-1)}{x^2}\\ &=-\frac{\sin(x)}x\frac{1-\cos^2(x)}{x(1+\cos(x))}\\ &=-\frac{\sin^3(x)}{x^2(1+\cos(x))} \end{align} $$ Por el Teorema del sándwich, tenemos $$ \lim_{x\to0}\frac{x\cos(x)-\sin(x)}{x^2}=0 $$

2voto

Vincenzo Oliva Puntos 3277

Una forma directa! Fue muy divertido para encontrarlo. En primer lugar, tomamos nota de $$\ell=\lim_{x\to0}\frac{\cos x-\frac{\sin x}{x}}{x}=\lim_{x\to0}\frac{\cos x -1}{x}+\lim_{x\to0}\frac{x-\sin x}{x^2}=\lim_{x\to0}\frac{x-\sin x}{x^2}. $$Then we try to get information from a very similar limit: \begin{align}\lim_{x\to0}\frac{\sin x\cos x-x}{x^2}=\lim_{x\to0}\frac{\sin(2x)/2-x}{x^2}&=\lim_{x\to0}\frac{\sin(2x)-2x}{2x^2} \\ &=\lim_{x\to0}\frac{\sin x-x}{\frac12x^2}\\&=-2\ell.\end{align}Now, we may also see $$\frac{x-\sin x}{x^2}=\frac{1-\frac{\sin x}{x}}{x} $$ which means $\ell=-f'(0)$, if it exists, where $f(x)=\frac{\sin x}{x}$ for $x\ne0$, $f(0)=1$. We can't tell whether $f'(0)$ exists, but the parity of $f$ ensures that if it does, it must be $0$; in particular, it can't be $+\infty$ nor $-\infty$. Therefore, what we found above implies $$\ell=\lim_{x\to0}\frac{x-x\cos x+\sin x-\sin x\cos x}{x^2}=\lim_{x\to0}(x+\sin x)\frac{1-\cos x}{x^2}=0. $$

1voto

gil Puntos 679

Es obligatorio para explotar $\lim_\limits{x\to 0} \dfrac{\sin x}{x}$$\lim_\limits{x\to 0} \dfrac{\cos x -1}{x^2}$?
Si no, ¿por qué no extenderlo, como: $$ \lim_\límites{x\to 0} \frac{ x \cos x -\sin x }{ x^2 } =\lim_\límites{x\to 0} \frac{ x [1 -x^2/2 +\mathscr{O}(x^4)] -[x -x^3/6 +\mathscr{O}(x^5)] }{x^2} =\lim_\límites{x\to 0} \frac{x -x^3/2 x +x^3/6 +\mathscr{O}(x^5)}{x^2} =\lim_\límites{x\to 0} \frac{-x^3/3}{x^2} =\lim_\límites{x\to 0} -\frac{x}{3} =0 $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X