Tengo dificultad para la conclusión de este límite ....; lugar de mis intentos y resultados, alguien puede ayudar?
los tanques de antemano
$$\lim_{x\to +a}\, \left(1+6\left(\frac{\sin x}{x^2}\right)^x\cdot\frac{\log(1+10^x)}{x}\right),\quad a=+\infty,\,\,\,0,\,\,\,\,-\infty$$ 1):$\,\,\,{a=+\infty}$
$$\lim_{x\to +\infty}\left(1+6\left(\frac{\sin x}{x^2}\right)^x\cdot\frac{\log(1+10^x)}{x}\right)$$ $$\sim\lim_{x\to +\infty}\, 1+6\left( \frac{\sin^x x}{x^{2x}} \cdot\frac{\log 10^x }{x}\right)=\lim_{x\to +\infty}\, 1+6\left( \frac{\sin^x x}{x^{2x}} \right)$$
$$\text{observing}\,\,\,\,\,\left|\frac{\sin x}{x^2} \right|<\frac{1}{x^2}, \text{so} \left|\left(\frac{\sin x}{x^2}\right)^x\right|<\frac{1}{x^{2x}}\to 0\,\,\,\, x\to+\infty:$$ $$\text{infact we have} \lim_{x\to+\infty} \frac{1}{x^{2x}}=\lim_{x\to +\infty} e^{-2x\log x}=0$$ $$=\lim_{x\+\infty}\, 1+6\left( \frac{\sin^x, x}{x^{2x}} \right)=1+6\cdot0=1 $$ 2):$\,\,\,{a=0}$
$$\lim_{x\to 0}\, \left(1+6\left(\frac{\sin x}{x^2}\right)^x\cdot\frac{\log(1+10^x)}{x}\right) \sim\lim_{x\to 0}\, 1+\frac{6\log2}{x}\left(\frac{ x}{x^2}\right)^x$$ $$\sim\lim_{x\to0}1+\frac{6\log2}{x}\left(\frac{1}{x}\right)^x$$ $$=\lim_{x\to 0} 1+\frac{6\log2}{x}e^{ x\ln \left(\frac{1}{x}\right)}\to \lim_{x\to 0}\, x\ln \left(\frac{1}{x}\right)=\lim_{x\to 0}\, \frac{\ln \left(\frac{1}{x }\right)}{\frac{1}{x}}=0\to e^0=1$$ $$=\lim_{x\to 0}\,1+\frac{6\log2}{x}\cdot1=+\infty$$
3):$\,\,\,{a=-\infty}$
deje $x=-t,\,\,\,$si$\,\,\,\ x\to -\infty\,\,\,$tenemos$ \,\,\,\ t\to+\infty,\,\,\,$ y así : $$\lim_{t\to +\infty}\, \left(1+6\left(\frac{\sin(-t)}{t^2}\right)^{-t}\cdot\frac{\log(1+10^{-t})}{-t}\right)$$ $$=\lim_{t\to +\infty}\, \left(1-6\left(-\frac{\sin t }{t^2}\right)^{-t}\cdot\frac{\log\left(1+\frac{1}{10^t}\right)}{t}\right)$$ $$=1-6\cdot\lim_{t\to +\infty}\, \left[\left(-\frac{t^2}{\sin t }\right)^{t}\cdot\frac{\log\left(1+\frac{1}{10^t}\right)}{t}\right]$$ $$\stackrel{(\bf T)}{=}1-6\cdot\lim_{t\to +\infty}\, \left[\left(-\frac{t^2}{\sin t }\right)^{t}\cdot \left(\frac{1}{10^t}-\frac{1}{2\cdot10^{2t}}\cdot\frac{1}{t}\right) \right]$$
.... pero aquí estoy perdido ....