Dices divida por $x$, pero que no es lo que haces en el denominador; sería:
$$ \lim_{x\to-2} \frac{x+2}{\sqrt{6+x}-2} = \lim_{x\to-2} \frac{1+\tfrac{2}{x}}{\tfrac{\sqrt{6+x}}{x}-\tfrac{2}{x}} = \lim_{x\to-2} \frac{1+\tfrac{2}{x}}{-\sqrt{\tfrac{6}{x^2}+\tfrac{1}{x}}-\tfrac{2}{x}} $$
Un mejor enfoque: $$\begin{array}{rl}
\displaystyle \lim_{x\to-2} \frac{x+2}{\sqrt{6+x}-2}
& \displaystyle = \lim_{x\to-2} \frac{\left(x+2\right)\color{blue}{\left(\sqrt{6+x}+2\right)}}{\left(\sqrt{6+x}-2\right)\color{blue}{\left(\sqrt{6+x}+2\right)}} \\[7pt]
& \displaystyle = \lim_{x\to-2} \frac{\left(x+2\right)\left(\sqrt{6+x}+2\right)}{x+2} \\[7pt]
& \displaystyle = \lim_{x\to-2} \left(\sqrt{6+x}+2\right) \\
& = 4
\end{matriz} $$