$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\infty}{\ln\pars{\cosh\pars{x}} \over x}\,\expo{-x}\,\dd x}$
\begin{align}&\color{#c00000}{%
\int_{0}^{\infty}{\ln\pars{\cosh\pars{x}} \over x}\,\expo{-x}\,\dd x}
=\int_{0}^{\infty}{x + \ln\pars{1 + \expo{-2x}} - \ln\pars{2} \over x}\,
\expo{-x}\,\dd x
\\[3mm]&=1 + \color{#00f}{\int_{0}^{\infty}
{\ln\pars{1 + \expo{-2x}} - \ln\pars{2} \over x}\,\expo{-x}\,\dd x}
\end{align}
\begin{align}&\color{#00f}{\int_{0}^{\infty}
{\ln\pars{1 + \expo{-2x}} - \ln\pars{2} \over x}\,\expo{-x}\,\dd x}
=\int_{0}^{\infty}\bracks{\sum_{n = 1}^{\infty}
{\pars{-1}^{n + 1} \over n}\expo{-2nx} -\ln\pars{2}}\expo{-x}\,{\dd x \over x}
\\[3mm]&=-\int_{0}^{\infty}\ln\pars{x}\bracks{\sum_{n = 1}^{\infty}
{\pars{-1}^{n + 1} \over n}\pars{-2n - 1}\expo{-\pars{2n + 1}x}
+\ln\pars{2}\expo{-x}}\,\dd x
\end{align}
Sin embargo,
$$
\int_{0}^{\infty}\ln\pars{x}\expo{-\alpha x}\,\dd x
=-\,{\ln\pars{\alpha} + \gamma \\alpha}\,,\qquad\Re\pars{\alpha} > 0
$$
A continuación,
\begin{align}&\color{#00f}{\int_{0}^{\infty}
{\ln\pars{1 + \expo{-2x}} - \ln\pars{2} \over x}\,\expo{-x}\,\dd x}
=-\braces{\sum_{n = 1}^{\infty}{\pars{-1}^{n + 1} \over n}\,
\bracks{\ln\pars{2n + 1} + \gamma}} + \gamma\ln\pars{2}
\\[3mm]&=\sum_{n = 1}^{\infty}{\pars{-1}^{n} \over n}\,\ln\pars{2n + 1}
=\int_{0}^{2}\sum_{n = 1}^{\infty}{\pars{-1}^{n} \over \xi n + 1}\,\dd\xi
=\int_{0}^{2}
\sum_{n = 1}^{\infty}{\pars{-1}^{n} \over n + 1/\xi}\,{\dd\xi \over \xi}
\\[3mm]&=\int_{0}^{2}{\Phi\pars{-1,1,1/\xi} \over \xi}\,\dd\xi
\end{align}
donde $\ds{\Phi\pars{z,s,\alpha}}$ es el Lerch Trascendente Función.
$$\color{#00f}{\large\int_{0}^{\infty}
{\ln\pars{\cosh\pars{x}} \over x}\,\expo{-x}\,\dd x}
=\color{#00f}{\large 1 + \int_{0}^{2}{\Phi\pars{-1,1,1/\xi} \\xi}\,\dd\xi}
$$
Hasta el momento, yo era incapaz de evaluar o/y encontrar el logaritmo involucrados sumas' y no hemos encontrado nada relacionado con $\ds{\Phi}$ integración. Además de la habitual de los enlaces,
este parece ser muy interesante.