$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, nº 1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\sf\mbox{If you evaluates the sum you'll return to the original integral.}$
$\sf\mbox{In any case the evaluation requires to consider the original integral.}$
Así,
\begin{align}&\color{#66f}{\large%
{1 \over \pi}\int_{0}^{1}\log\pars{1 + x \over 1 - x}\,{1 \over x\root{1 - x^{2}}}\,\dd x}
={2 \over \pi}\
\overbrace{\int_{0}^{1}\,{\rm arctanh}\pars{x}\,{1 \over x\root{1 - x^{2}}}\,\dd x}
^{\dsc{x}\ \equiv\ \dsc{\tanh\pars{t}}}
\\[5mm]&={2 \over \pi}\int_{0}^{\infty}t\,{1 \over \tanh\pars{t}\root{1 - \tanh^{2}\pars{t}}}\,\sech^{2}\pars{t}\,\dd t
={2 \over \pi}\int_{0}^{\infty}{t \over \sinh\pars{t}}\,\dd t
\\[5mm]&={4 \over \pi}\int_{0}^{\infty}{t\expo{-t} \over 1 - \expo{-2t}}\,\dd t
={4 \over \pi}\sum_{n\ =\ 0}^{\infty}\int_{0}^{\infty}t\expo{-\pars{2n + 1}t}\,\dd t
={4 \over \pi}\sum_{n\ =\ 0}^{\infty}{1 \over \pars{2n + 1}^{2}}\
\overbrace{\int_{0}^{\infty}t\expo{-t}\,\dd t}^{\ds{=}\ \dsc{1}}
\\[5mm]&={4 \over \pi}\bracks{\sum_{n\ =\ 1}^{\infty}{1 \over n^{2}}
-\sum_{n\ =\ 1}^{\infty}{1 \over \pars{2n}^{2}}}
={4 \over \pi}\pars{{3 \over 4}\
\overbrace{\sum_{n\ =\ 1}^{\infty}{1 \over n^{2}}}^{\ds{=}\ \dsc{\pi^{2} \over 6}}}
=\color{#66f}{\Large{\pi \over 2}}
\end{align}