inducción de la trivial:
tiene base caso $n=2$. asumir ${\frac{4^n}{n+1}}\lt {\frac{(2n)!}{(n!)^2}},n\ge 2$
${\frac{4^n}{n+1}}(\frac{4(n+1)}{n+2})\lt {\frac{(2n)!}{(n!)^2}}(\frac{(2n+2)(2n+1)}{(n+1)(n+1)})\space$?
${\frac{4^n}{n+1}}(\frac{4n+4}{n+2})\lt {\frac{(2n)!}{(n!)^2}}(\frac{2(n+1)(2n+1)}{(n+1)(n+1)})\space$?
${\frac{4^n}{n+1}}(2)\lt {\frac{(2n)!}{(n!)^2}}(\frac{2(2n+1)}{(n+1)})\space$?
${\frac{4^n}{n+1}}(2)\lt {\frac{(2n)!}{(n!)^2}}(\frac{4n+2}{(n+1)})\space$?
${\frac{4^n}{n+1}}(2)\lt {\frac{(2n)!}{(n!)^2}}(\frac{2n+2n+2}{(n+1)})\space$?
${\frac{4^n}{n+1}}(2)\lt {\frac{(2n)!}{(n!)^2}}({\frac{2n}{(n+1)}}+{\frac{2n+2}{(n+1)}})\space$?
($? = $ no tomado como verdadero sólo para simplificar)
${\frac{4^n}{n+1}}(2)\lt {\frac{(2n)!}{(n!)^2}}({\frac{2n}{(n+1)}}+2),n\ge 2$
obvio que $\space 2\lt {\frac{2n}{(n+1)}}+2$ % todo $n\in N$
$\therefore {\frac{4^{n+1}}{(n+1)+1}}\lt {\frac{(2(n+1))!}{((n+1)!)^2}},n\ge 2$
y por inducción