Dado $|x|<1 $ demostrar que $\\1+2x+3x^2+4x^3+5x^4+...=\frac{1}{(1-x)^2}$.
1ª Prueba: Deja de $s$ se define como $$ s=1+2x+3x^2+4x^3+5x^4+\cdots $$
Entonces tenemos
$$ \begin{align} xs y=x+2x^2+3x^3+4x^4+5x^5+\cdots\\ s-xs&=1+(2x-x)+(3x^2-2x^2)+\cdots\\ s-xs y=1+x+x^2+x^3+\cdots\\ s-xs&=\frac{1}{1-x}\\ s(1-x)&=\frac{1}{1-x}\\ s&= \frac{1}{(1-x)^2} \end{align} $$
2ª prueba:
$$ \begin{align} s&=1+2x+3x^2+4x^3+5x^4+\cdots\\ &=\left(1+x+x^2+x^3+\cdots\right)'\\ &=\left(\frac{1}{1-x}\right)'\\ &=\frac{0-(-1)}{(1-x)^2}\\ &=\frac{1}{(1-x)^2} \end{align} $$
3ª Prueba:
$$ \begin{align} s=&1+2x+3x^2+4x^3+5x^4+\cdots\\ =&1+x+x^2+x^3+x^4+x^5+\cdots\\ &+0+x+x^2+x^3+x^4+x^5+\cdots\\ Y+0+0+x^2+x^3+x^4+x^5+\cdots\\ Y+0+0+0+x^3+x^4+x^5+\cdots\\ &+\cdots \end{align} $$ $$ \begin{align} s&=\frac{1}{1-x}+\frac{x}{1-x}+\frac{x^2}{1-x}+\frac{x^3}{1-x}+\cdots\\ &=\frac{1+x+x^2+x^3+x^4+x^5+...}{1-x}\\ &=\frac{\frac{1}{1-x}}{1-x}\\ &=\frac{1}{(1-x)^2} \end{align} $$
Estos son mis tres pruebas hasta la fecha. Estoy buscando más formas de demostrar la declaración.