Demostrar la siguiente ecuación ($|x|<1$) $$\prod_{n=1}^{\infty} \left(1-x^n+x^{2n}\right) = \prod_{n=1}^{\infty} \frac1{1+x^{2n-1}+x^{4n-2}}$$
He hecho esta pregunta y yo tenemos la siguiente respuesta, pero creo que puede ser incompleta. Si alguien puede señalar un error en mi prueba o dar una mejor prueba, a continuación, se agradecería.
Mi solución:
$$\begin{align} &f(x)=\prod_{n=1}^{\infty} \left(1-x^n+x^{2n}\right)\\ &N(p,q)=\{n\in\mathbb N \mid n\ne (2m-1)2^{k-1};m,k\in\mathbb N,2m-1\leq p,k\leq q\}\\ &f(x)(1+x+x^2)=(1+x+x^2)(1-x+x^2)\prod_{n\in N(1,1)}^{\infty} \left(1-x^n+x^{2n}\right)\\ &=(1+x^2+x^4)\prod_{n\in N(1,1)}^{\infty} \left(1-x^n+x^{2n}\right)=(1+x^2+x^4)(1-x^2+x^4)\prod_{n\in N(1,2)}^{\infty} \left(1-x^n+x^{2n}\right)\\ &=(1+x^4+x^8)\prod_{n\in N(1,2)}^{\infty} \left(1-x^n+x^{2n}\right)=(1+x^4+x^8)(1-x^4+x^8)\prod_{n\in N(1,3)}^{\infty} \left(1-x^n+x^{2n}\right)\\ &=(1+x^8+x^{16})\prod_{n\in N(1,3)}^{\infty} \left(1-x^n+x^{2n}\right)=\cdots\\ &=\lim_{k\to\infty}(1+x^{2^k}+x^{2^{k+1}})\prod_{n\in N(1,k)}^{} \left(1-x^n+x^{2n}\right)=\prod_{n\in N(1,\infty)}^{} \left(1-x^n+x^{2n}\right)\\ &\text{Similarly,}\\ &f(x)(1+x+x^2)(1+x^3+x^6)=\prod_{n\in N(3,\infty)}^{} \left(1-x^n+x^{2n}\right)\\ &f(x)(1+x+x^2)(1+x^3+x^6)(1+x^5+x^{10})=\prod_{n\in N(5,\infty)}^{} \left(1-x^n+x^{2n}\right)\\ &\cdots\\ &f(x)\prod_{m=1}^{\infty} \left(1+x^{2m-1}+x^{2(2m-1)}\right)=\lim_{p\to\infty} \prod_{n\in N(p,\infty)}^{} \left(1-x^n+x^{2n}\right)=1 \end{align}$$
(*) Es obvio que $\{(2m-1)\cdot2^{k-1}\mid m,k\in \mathbb N\}$ es equivalente a $\mathbb N$, o también debo demostrarlo?
Gracias.