Cómo evaluar la integral ∫∞0cos(2x+1)3√xdx? I tried substitution x=u3 and I got 3∫∞0ucos(2u3+1)du. After that I tried to use integration by parts but I don't know the integral ∫cos(2u3+1)du. ¿Alguna idea? Gracias de antemano.
Respuestas
¿Demasiados anuncios?I=Γ(23)cos(1+π3)22/3≈−0.391190966503539⋯
\begin{align} \int^\infty_0\frac{\cos(2x+1)}{x^{1/3}}{\rm d}x &=\int^\infty_0\frac{\cos(2x+1)}{\Gamma(\frac{1}{3})}\int^\infty_0t^{-2/3}e^{-xt} \ {\rm d}t \ {\rm d}x\tag1\\ &=\frac{1}{\Gamma(\frac{1}{3})}\int^\infty_0t^{-2/3}\int^\infty_0e^{-xt}\cos(2x+1) \ {\rm d}x \ {\rm d}t\\ &=\frac{\cos(1)}{\Gamma(\frac{1}{3})}\int^\infty_0\frac{t^{1/3}}{t^2+4}{\rm d}t-\frac{2\sin(1)}{\Gamma(\frac{1}{3})}\int^\infty_0\frac{t^{-2/3}}{t^2+4}{\rm d}t\tag2\\ &=\frac{\cos(1)}{2^{2/3}\Gamma(\frac{1}{3})}\int^\infty_0\frac{t^{1/3}}{1+t^2}{\rm d}t-\frac{\sin(1)}{2^{2/3}\Gamma(\frac{1}{3})}\int^\infty_0\frac{t^{-2/3}}{1+t^2}{\rm d}t\tag3\\ &=\frac{\cos(1)}{2^{5/3}\Gamma(\frac{1}{3})}\int^\infty_0\frac{t^{-1/3}}{1+t}{\rm d}t-\frac{\sin(1)}{2^{5/3}\Gamma(\frac{1}{3})}\int^\infty_0\frac{t^{-5/6}}{1+t}{\rm d}t\tag4\\ &=\frac{\pi\left(\cos(1)-\sqrt{3}\sin(1)\right)}{2^{2/3}\Gamma(\frac{1}{3})\sqrt{3}}\tag5\\ &=\frac{2\pi\cos(1+\frac{\pi}{3})}{2^{2/3}\frac{2\pi}{\Gamma(\frac{2}{3})\sqrt{3}}\sqrt{3}}\tag6\\ &=\frac{\Gamma(\frac{2}{3})\cos(1+\frac{\pi}{3})}{2^{2/3}} \end {Alinee el}
Explicación:
(1): 1xn=1Γ(n)∫∞0tn−1e−xtdt
(2): cos(a+b)=cos(a)cos(b)−sin(a)sin(b)
(2): ∫∞0e−axsin(bx)dx=ba2+b2
(2): ∫∞0e−axcos(bx)dx=aa2+b2
(3): t↦2t
(4): t↦√t
(5): ∫∞0xp−11+xdx=πcsc(pπ)
(6): Γ(z)=πcsc(πz)Γ(1−z), acosx−bsinx=√a2+b2cos(x+arctanba)
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle} \newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\mitad}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left (\, nº 1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert} \ds{\int_{0}^{\infty}{\cos\pars{2x + 1} \over \root[3]{x}}\,\dd x:\ {\large ?}}.
\begin{align} &\color{#c00000}{\int_{0}^{\infty}{\cos\pars{2x + 1} \over \root[3]{x}}\,\dd x} =\Re\bracks{\expo{\ic}\ \overbrace{\int_{0}^{\infty}x^{-1/3}\expo{2x\ic}\,\dd x} ^{\ds{x \equiv \ic t/2=\expo{\pi\ic/2}t/2\ \imp\ t = -2\ic x}}}\ =\ \\[3mm]&=\Re\bracks{\expo{\ic}\int_{0}^{-\infty\ic}% \pars{\expo{\pi\ic/2}t \over 2}^{-1/3}\expo{2\pars{\ic t/2}\ic}\,{\ic \over 2} \,\dd t} \\[3mm]&=-2^{-2/3}\,\Im\bracks{\expo{\pars{1 - \pi/6}\ic} \int_{0}^{-\infty\ic}t^{-1/3}\expo{-t}\,\dd t} \\[3mm]&=-2^{-2/3}\,\Im\braces{\expo{\pars{1 - \pi/6}\ic} \lim_{R\ \to\ \infty}\bracks{-\int_{R}^{0}t^{-1/3}\expo{-t}\,\dd t -\left.\int_{-\pi/2}^{0}\,z^{-1/3}\expo{-z}\,\dd z \right\vert_{z\ =\ R\expo{\ic\theta}}}} \end{align}
Sin embargo, \begin{align} &\color{#c00000}{\large% \verts{\int_{-\pi/2}^{0}\,z^{-1/3}\expo{-z}\,\dd z}_{\,z\ =\ R\expo{\ic\theta}}} \leq \verts{\int_{-\pi/2}^{0}R^{-1/3}\expo{-R\cos\pars{\theta}}R\,\dd\theta} =R^{2/3}\int_{0}^{\pi/2}\expo{-R\sin\pars{\theta}}\,\dd\theta \\[3mm]& < R^{2/3}\int_{0}^{\pi/2}\expo{-2R\theta/\pi}\,\dd\theta ={\pi \over 2}\,R^{-1/3}\pars{1 - \expo{-R}} \color{#c00000}{\large\stackrel{R \to \infty}{\to} 0} \end{align}
A continuación, \begin{align} &\color{#66f}{\large\int_{0}^{\infty}{\cos\pars{2x + 1} \over \root[3]{x}}\,\dd x} =-2^{-2/3}\sin\pars{1 - {\pi \over 6}}\int_{0}^{\infty}t^{-1/3}\expo{-t}\,\dd t \\[3mm]&=\color{#66f}{\large% -2^{-2/3}\sin\pars{1 - {\pi \over 6}}\Gamma\pars{2 \over 3}} \approx {\tt -0.3911} \end{align}
Aquí es cómo. El enfoque se basa en Mellin transformar.
I = \int_{0}^{\infty}\frac{\cos(2x+1)}{\sqrt[3]{x}}dx = \cos(1)\int_{0}^{\infty}\frac{\cos(2x)}{\sqrt[3]{x}}dx -\sin(1)\int_{0}^{\infty}\frac{\sin(2x)}{\sqrt[3]{x}}dx .
Para evaluar la integral en el lado derecho de hacer el cambio de variables t=2x y el uso de la Mellin de transformación (ver tablas) de \cos(x) \sin(x) y, a continuación, tomar el límite de s \to 2/3 . Yo creo que se puede terminar el problema. Ver técnicas relacionadas.