SUGERENCIA: $$\binom{n}2=\frac{n!}{2!(n-2)!}=\frac{n(n-1)}2\;.$$ Aplique la misma idea a $\binom{n-1}2$ suma las fracciones resultantes y simplifica.
Alternativamente, si sabe que $1+2+\ldots+n=\frac{n(n+1)}2=\binom{n+1}2$ se puede observar que
$$\color{green}{\binom{n}2=1+2+\ldots+(n-2)+(n-1)}\;,$$
y
$$\color{brown}{\binom{n-1}2=1+2+\ldots+(n-3)+(n-2)}\;.$$
Ahora mira la imagen de abajo:
$$\begin{array}{ccc} &1&2&3&\ldots&n-3&n-2&n-1\\ 1&\color{green}\bullet&\color{brown}\bullet&\color{brown}\bullet&\ldots&\color{brown}\bullet&\color{brown}\bullet&\color{brown}\bullet\\ 2&\color{green}\bullet&\color{green}\bullet&\color{brown}\bullet&\ldots&\color{brown}\bullet&\color{brown}\bullet&\color{brown}\bullet\\ 3&\color{green}\bullet&\color{green}\bullet&\color{green}\bullet&\ldots&\color{brown}\bullet&\color{brown}\bullet&\color{brown}\bullet\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\ n-3&\color{green}\bullet&\color{green}\bullet&\color{green}\bullet&\ldots&\color{green}\bullet&\color{brown}\bullet&\color{brown}\bullet\\ n-2&\color{green}\bullet&\color{green}\bullet&\color{green}\bullet&\ldots&\color{green}\bullet&\color{green}\bullet&\color{brown}\bullet\\ n-1&\color{green}\bullet&\color{green}\bullet&\color{green}\bullet&\ldots&\color{green}\bullet&\color{green}\bullet&\color{green}\bullet\\ \end{array}$$